
AFRL-DE-TR-2002-1063, Vol. I AFRL-DE-TR- 
2002-1063, Vol. I 

MECHANICS OF A NEAR NET-SHAPE STRESS- 
COATED MEMBRANE 

Volume I of n 
THEORY DEVELOPMENT USING THE METHOD OF 
ASYMPTOTIC EXPANSIONS 

James M, Wilkes 

December 2002 

Final Report 

20030606 082 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

AIR FORCE RESEARCH LABORATORY 
Directed Energy Directorate 
3550 Aberdeen Ave SE 
AIR FORCE MATERIEL COMMAND 
KIRTLAND AIR FORCE BASE, NM 87117-5776 



Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U. S. Gov- 
ernment. The fact that the Government formulated or supplied the drawings, specifications, 
or other data, does not license the holder or any other person or corporation; or convey any 
rights or permission to manufacture, use, or sell any patented invention that may relate to 
them. 

This report has been reviewed by the Public Affairs Office and is releasable to the National 
Technical Information Service (NTIS). At NTIS, it will be available to the general public, 
including foreign nationals. 

If you change your address, wish to be removed from this mailing list, or your organization no 
longer employs the addressee, please notify AFRL/DEBS, 3550 Aberdeen Ave SE, Kirtland 
AFB, NM 87117-5776. 

Do not return copies of this report unless contractual obligations or notice on a specific 
document requires its return. 

This report has been approved for publication. 

'^dlo?/^ ^' C^U^MJ?0-_. 
RICHARD A. CARRERAS 
Project Manager 

JEFFERY B. MARTIN, LtC R. EARL GOOD, SES 
Chief, DEBS Director, Directed Energy 



REPORT DOCUMENTATION PAGE Forni Appmved 
OMB No. 0704-0188 

Public reporSno burden for this Krtlecllwi of Infomatlon is estmated to average 1 hour per response, indudlng the lime for reviewing insliucticns, seatxiilng easting data sources, gathering and malnteining Bie 
data needed, and con^jleling and reviewing this cc^lectlon of Infwmation. Send ixinwnents regarding this burden esBmateor any otha- a^iect of this cdlection of Information, Indudlng suggesBois to reducing 
this burden to Departtnent of Defense, Washington Headijuaners Serwces, Directorate for Infwmation Operations and Reports (0704-0188), 121S Jefferson ttevis Hghway, Suite 1204, ArlingtM, VA 2^02- 
4302. Respondents ^ouid lie avsre that notwithstanding any other provislcn of law, no person shall be subject to any penalty for felling to comply vwth a cdlecBon of Infonratiai if It does not dlitoy a omeMy 
valid OMB control nurrfcer. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
02-12-2002 

2. REPORT TYPE 
Technical Report 

4. TITLE AND SUBTITT-E 
Mechanics of a Near Net-Shape Stress-Coated Membrane 

I: Theory Development Using the Method of Asymptotic 
Expansions 

Volume 

6. AUTOOR(S) 

James M, Wilkes 

7. PERFORMING ORG^EATION NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory/DEBS 
3550 Aberdeen Ave SB 
Kirtland AFB, NM 87117-5776 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 
801 North Randolph Street, Room 732 
Arlington, VA 22203-1977 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release: distribution is unlimited. 

3. DATES COVERED (Fmm - To) 
Oct 2000 - Sep 2002 

5a. CONTRACT NUMBER 

5b. GRMIT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
61102P 

5d. PROJECT NUMBER 
2302 

Se. TASK NUMBER 
BM 

5f. WORK UNIT NUMBER 
03 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

AFRL-DB-TR-2002-1063,   Volume 
I of  II 

10. SPONSORflWONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

13. SUPPLEMENTARY NOTES 

14. /«STRACT 

The method of as^ptotic expansions was applied to the geometrically nonlinear, three-dimensional equations of a coated 
membrane laminate, each material component of wrtiich was assumed to be a linear, uniform, homogeneous, and isotropic 
elastic material in which there exist residual stresses. Our goal was to systematically derive by a single method the 
generalizations of four well-known theories of a single material to a coated membrane laminate. Two of ttie theories, one 
geometrically linear, the ottier geometrically nonlinear, describe a true membrane laminate offering no resistance to bending. 
These are applicable to membrane laminate vibration analysis, and pressurized sfress-coated membranes undergoing large 
deflections, respectively. The other two describe stress-coated membrane shells having small but non-zero bending stiffness; 
these theories are to be used to determine a coating stress prescription that will maintain the shape of an initially parabolic 
stress-coated membrane laminate. Solutions of associated boundary value problems are given in Volume II of the report. 

15. SUBJECT TERMS 
Membrane mirrors, optical stress coatings, composite material mechanics, plate and shell 
theoiry 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
Unclassified 

b. ABSTOACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION 
OF ABSTRACT 

Unlimited 

18. NUMBER 
OF PAGES 

66 

19a. NAME OF RESPONSIBLE PERSON 
James M. Wilkes 
19b. TELEPHONE NUMBER (MuOe arm 
code)     505-846-4752 

Standaiti Form 298 (Rev. 8-88) 
nrmcribed by ANSI SU. 23S.18 





Contents 

1 Introduction , 

2 Reference Placement and Reference Configuration 2 

3 Deformation, Displacement, and Strain Q 

4 Equilibrium Equations jj 

5 Constitutive Relations j_j 

6 Boundary Condition of Pressure J4 

T   On the Derivation of Theories of Two-Dimensional Elastic Bodies from the Three- 
Dimensional Theory of Elasticity, Using the Method of Asymptotic Expansions 15 

8 Geometrically Nonlinear Shell Laminate Theory 21 
8.1 Leading Order Results Obtained by Scaling of the Constitutive Itelations  21 
8.2 Equilibrium Equations to Leading Order  26 
8.3 Scaled Boundary Conditions of Pressure  27 
8.4 Leading Order Equilibrium Solution for the Out-of-Plane Stress Components  27 
8.5 Continuity Conditions on the Out-of-Plane Stress Components   .  29 
8.6 Formulation of Equilibrium Equations in Terms of Stress Resultants and Stress Couples  ... 34 

9 Geometrically Nonhnear Membrane Shell Laminate Theory 36 

10 Geometrically Linear Shell Laminate Theory 40 

11 Geometrically Linear Membrane Shell Laminate Theory 45 

12 Conditions ^a 

A  Generalization to a Multilayer Coating 43 

ui 



List of Figures 
1 Optical lenticular for imaging       1 
2 Definition of the reference configuration S (upper part of Figure) of a coated membrane shell 

of revolution as a mapping from the reference placement C (lower part of Figure), assuming 
the thicknesses he and hg to be constant along any line parallel to the axis      3 

3 Definition of the reference configuration 5 as a mapping from the reference placement C, 
assuming the thicknesses he and hg to be constant along any line through a normal to the 
middle surface Zs = T{R)      5 

4 Mappings relating the reference placement, reference configuration, and deformed corifiguration.    7 
5 Geometry of multilayer stack     49 

IV 



List of Tables 

1      Values of scaling exponents for various theories.     21 



VI 



1   Introduction 

The primary motivation for this research is the interest by the Air Force and many other organizations 
in developing and deploying large, precise, lightweight, space-based antennas and optical telescopes. Large 
diameter, optical quality membrane reflectors may well be the critical components that make such structure 
possible. The prevailing paradigm for creating doubly-curved membrane surfaces is the pressurized lenticular 
configuration, illustrated in Figure 1, However, there are serious difficulties that must be overcome in order 
for such a configuration to be successfully deployed in space. These problems are discussed at some length 
in Reference [1], 
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Figure 1: Optical lenticular for imaging. 

An alternative to the pressurized lenticular configuration is a thin laminate shell consisting of a membrane 
and a dielectric coating commonly used in optics to meet a high reflectivity requirement. This laminate shell 
is referred to as a stress-coated net-shape membrane reflector. The net-shape membrane portion of the 
laminate is realized by manufacturing a polymer to nearly its final shape, which is typically either spherical 
or parabolic. The net-shape process involves several basic steps. The solvent-based polymer is initially cast 
on a mandrel (also referred to as a "mold") having the desired surface qualities (e.g., optically smooth, and 
having the required shape), where the solvent is allowed to evaporate, leaving a thin high quality membrane 
of the desired shape. At this point, however, significant internal stress has developed in the membrane due 
to the solvent evaporation process. The membrane is then taken through an annealing process in which the 
mold and membrane are heated to nearly the glass transition temperature of the polymer, eliminating most 
of the shrinlage stress. However, the coefiicient of thermal expansion (CTE) of the membrane is, in the 
systems we consider, higher than that of the mold. As the system is allowed to cool to room temperature, 
the membrane attempts to contract more than the mold, due to its higher CTE. Since the membrane is Mly 
constrained by the mold, hence cannot complete its contraction, the effect of the CTE mismatch is to induce 
a (tensile) thermal stress in the membrane. Such a stress is referred to as non-mechanical (or inelastic or 
residual), i.e., it is a stress that exists in the absence of any displacement-related strain (see, for example, 
Fung [2], pp. 354-355). This residual thermal stress would act to deform the membrane firom its initial shape 
upon removal from the mold. The other serious problem is the simple fact that a membrane is "flimsy", that 
is, it lacks the stiffness required to resist bending due to external loads. Examples of such loads are gravity 



and wind in a near earth environment, and slewing or other forces used for control in a space environment. 
At any rate, upon removal from the mold, a net-shape membrane would not be expected to retain the shape 
of the mold. 

The research reported here addresses the possibihty of solving both the CTE mismatch problem, and 
lack of stiffness, by applying to the membrane a coating with an intrinsic compressive stress designed to 
compensate the CTE mismatch stress, as well as provide enough stiffness to maintain the desired shape 
under various loads. Specifically, we examine the effects of gravity and uniform pressure loads on the 
stress-coated membrane. In Volume I of this two-volume report the method of asymptotic expansions is 
used to derive various theories of stress-coated membranes from the general, geometrically nonlinear, three- 
dimensional theory of elasticity. In Volume II we present solutions of the equations satisfying various types 
of boundary conditions. 

2   Reference Placement and Reference Configuration 

We introduce a region C of 3-dimensional Euclidean space in the form of a thin right circular cylinder of 
radius a and uniform thickness (or height) h « a, and refer to this purely mathematical construct as the 
reference placement of a coated membrane shell. This cylinder is further assumed to be divided into two 
coaxial cylinders of the same radius o, one of thickness hg, the other of thickness he, so that h = ha + he, 
as shown in the lower portions of Figures 2 and 3. We assume given a fixed orthonormal Cartesian basis 
{i,j,k} with origin O at the center of the circular disk defined by the intersection of C and a bisecting 
plane orthogonal to the axis. An arbitrary point P of the reference placement may be specified by either its 
Cartesian coordinates X"* = {X,Y,Z}, or its cyHndrical coordinates C?"* = {R,Q,Z}. Thus, the bisecting 
or middle plane of C is defined by Z = 0, and the axis of C by the line X = Y = 0 through O. The position 
vector of P with respect to O is given by 

X = Xi + Yj -{- Zk = RcosQi + R sinGj -I- Zk. (2.1) 

We introduce orthonormal basis vectors {ER,'Ee,'Ez} associated with the cylindrical coordinates, defined 
by 

ax 

so that 
Efl = cos0i-I-sin0j,    Ee = -sin0i-I-cosQj,    E^ = k, (2.3) 

in terms of which we can write the position vector as 

X = RER + ZEz. (2.4) 

The physical system of interest is a laminate material body in the form of an initially curved membrane 
substrate to which an optical coating has been applied. The reference configuration of this coated membrane 
is assumed to be a region S defined by a mapping (j) from the reference placement C, under which a point P 
of C is mapped to some material point P = <^(P) of S. A point S of the middle plane of C with coordinates 
(R, Q, 0) is mapped by (^ to a point S of the middle surface of <S with coordinates {R, 0, Zs), where 

Zs = r{R), (2.5) 

hence we are assuming that the middle surface is a surface of revolution. The azimuthal coordinate 0 of 
any point of C is assumed unchanged by this mapping, so that 0 = 0 on 5. This action of (f> on the middle 
plane is illustrated in the upper portions of Figures 2 and 3. 

The action of (^ on points off the middle plane depends on the distribution of the thicknesses he and hg as 
a result of the processes used to cast the membrane on the mold, and to apply the coating to the membrane. 
The simplest model results by assuming the coated membrane to have constant axial thicknesses, so that 

E^ = X,^/|X^|,        where       X,A = ^T^J, (2.2) 
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Figure 2: Definition of the reference configuration S (upper part of Figure) of a coated membrane shell of revolution 
as a mapping from the reference placement C (lower part of Figure), assuming the thicknesses he and ft^ to be constant 
along any line parallel to the axis. 

an arbitraxy point P with non-zero axial coordinate Z is mapped to a material point P with coordinates 
{R, 0, Z), obtained by translating a distance Z (equal to the original axial coordinate) from § along the 
axial direction E^, as shown in the upper portion of Figure 2. The complete mapping can be determined 
geometrically as follows. The position vector of P with respect to O can, according to Figure 2, be written 
in two diiFerent ways: 

flEjj + Z-Ez = Y + Zm, (2.6) 

where Y is the position vector of S with respect to O. Now, Y = RBR + T{R) Ez, hence we have from 



(2-6): 
RER + ZEz = RER + \r{R) + Z]Ez, 

and a comparison of components on both sides of the second equality yields the remaining two component 
mappings of (/>(© = 0 is the other component mapping): 

R = R,    and   Z = T{R) + Z. (2.7) 

The position vector of a material point in the reference configuration <S of the coated membrane is thus given 
in terms of coordinates on the reference placement C by 

X = i?Efl + [r(ie) + Z\Ez. (2-8) 

For comparisons with finite element analyses that use shell elements in their formulation, it is perhaps 
more appropriate to assume the coated membrane to have constant thicknesses he and /ig normal to the 
middle surface. In this case^an arbitrary point P with non-zero axial coordinate Z is mapped to a material 
point. P with coordinates {il,0,Z}, obtained by translating the distance Z along the unit normal EN to the 
middle surface at S (see Figure 3). The position vector of P with respect to O is then given by 

X = RER + ZEz = Y + ZEN, (2-9) 

where Y = RER + T{R) Ez, as before. To compute the unit normal EN, we first note that equation (2.5) 
can be written as ip{R, Zs) = 0, where ip is the function defined by 

TI;{R,Z) = Z -T{R). (2.10) 

The unit normal to the midsurface is the normalized gradient of this function: 

W        -T,RER + EZ f2in 

where T,R here is the ordinary derivative of T with respect to R (note that this slope is negative in the first 
quadrant). Substituting these results in (2.9) yields 

RER + ZEz = RER + T{R)Ez + zh^S^^^\, 

from which the component mappings of 0 are given by 

R = R- Z    .     ^'f^   ^,   = R+ Z sina, 
• VI + (r,H)^ (2.12) 

Z = r{R) + Z ^ = T{R) + Z cosa, 
Vi + (r.fl)" 

where a is the angle between Ez and the unit normal Ejv at a point on the middle surface (cos a = EZ-EN)- 

From (2.12) we have 
4 TT I  

cosa = —,        sina = —^,    where   $ = \/l + {T,R)^ . (2.13) 
# $ V 

The position vector of a material point in the reference configuration of the coated membrane is thus given 
in terms of coordinates on the reference placement by 

X= (R- Z^\ ER + (T{R) + Z^\EZ = iR + Zsma)ER + [r(i?) + Zcosa]Ez.      (2.14) 



Surface of Mold 

Mapping <f>: R = R + Z sina, e = B,Z = T{R) + Z msa 

X^^ 
p 

z 

O             R             s 

Z = hf2 

z = o 

Z=(he- ft,)/2 

Z = -A/2 

Figure 3: Definition of the reference configuration 5 as a mapping from the reference placement C, assuming the 
thicknesses he and hg to be constant along any line through a normal to the middle surface Zs = T(R). 

The use of a model with constant thicknesses normaJ to the middle surface is comiderably more compli- 
cated to analyze theoretically than one with constant axial thicknesses. In the remainder of this work we 
use the simpler model. To get an estimate of the errors made in choosing the constant-axial-thickness model 
over the constant-normal-thickness model, we consider the important case of a paraboloidal middle surfece 
defined by 

T(R) = To 
4/ 

H^ (2.15) 

where / is the focal length and To is the apex displacement. Since r(o) = 0, it follows that To = o^/(4/), 



hence 
TiR) = ^{a'-R'). (2.16) 

The tangent of the slope angle is, from (2.13), tana = -T,R, SO that 

tana = -^ R- (2-17) 

The /-number of the paraboloid, which we denote by F*, is defined by 

F* = J-, (2.18) 
2a 

SO we can write the last two equations in terms of /-number as 

The angle a has its maximum value at the edge i? = a, in which case 

tanamai = ^^- (2-20) 

For the optical applications envisioned here we expect to have /-numbers of 2 or greater, hence 

tanamoi < 0.125     =>     amax < 7.1°, 
cos amax > 0.992,        sinamoa; < 0.124. 

(2.21) 

Use of the constant-axial-thickness model entails approximating cosa « 1 and sin a ss 0, so for this lowest /- 
number one might expect any differences between our theoretical results, and finite element analysis results, 
to be at least partly attributable to these approximations. 

3   Deformation, Displacement, and Strain 

When the coated membrane shell is removed from the mold, releasing it from its constraints, it deforms until 
a new equilibrium configuration, which we refer to as the deformed, or ciurrent, configuration, is attained. 
The deformation is assumed^to be described mathematically by a one-to-one invertible mapping / that maps 
the body point located at P of the reference configuration C to a new point p = /(P). The set of image 
points of 7 defines the deformed configuration X>. Variables that refer to points of this new configiuration 
will be denoted by lower case Latin letters, e.g., x" = {x\ar^,a;^} = {x,y,z} are Cartesian coordinates, and 
g" = {q^,q^,q^} = {r,d,z} are cylindrical coordinates on the deformed configuration. Thus, in terms of 
these cylindrical coordinates, the mapping p = /(P) is coordinatized by 

9"(p) = 9"(/(p)) = («" ° 7)(p) = r (P). (3-1) 

where the functional compositions g° o/= 7° define the cylindrical component mapinngs of the^mapping /. 
Assuming the arbitrary point P to be coordinatized by the cylindrical coordinates Q"^ = {k, 0, Z} on the 
reference configuration, equation (3.1) can be written as 

g"(p) = riQ'inQ'inQHH- (3-2) 
It is more convenient, however, to relate points of the deformed configuration to points of the reference 
placement S. Each point P of C is the image of some point P of 5 via the mapping P = (j>(P). This mapping 
can be used to express the actual deformation of the shell in terms of points of the reference placement, viz., 

p = 7(P) = 7(^(P)) = (7° <^)(P) = /(P), (3.3) 



where the functional composition f = f o(j> defines a mapping from the reference placement to the current 
configuration. The three mappings we have introduced are illimtrated in Figure 4. Thus, cylindrical coordi- 
nates of points on the current configuration are given in terms of the cyhndrical coordinates Q^ = {R, Q, Z} 
on the reference placement by 

ripj riQHPWiPiQHn, (3.4) 

analogous to (3.2). 

Reference Configuration 

P 

Deformed Configuration 

Reference Placement 

Figure 4: Mappings relating the reference placement, reference configuration, and deformed configuration. 

The position vector of a material point in the reference configuration S of the coated membrane is given 
in ternw of coordinates on the reference placement C by equation (2.8), repeated here: 

X = REn + [r{R) + Z]Ez. (3.5) 

EVom (2.3), also repeated here: 

Efl = cos8i + sinSj,    Ee = -sinSi + cos0j,    Ez = k, (3.6) 

we obtain the differentials of the basis vectors, expressed in terms of the same b^is vectors: 

dEn = dQEe,    dEe = -(IQER,    MZ = 0. (3.7) 

Using these, we find for the differential of the position vector: 

dk = dRBii +Rd0Ee+ [dZ + T^iidR]Ez. (3.8) 

In (3.8) we introduce the differential forms O^ = dR, Qe = IM&, and Qz = dZ, to write it as 

dX = QBEH + n@Ee + [Qz+ T,RilR]Bz = HAEA + T^RQREZ, (3.9) 

where the usual summation convention on repeated indices is to be understood, as in the first term of 
the second equality of (3.9), unless otherwise stated. Thus, the differential forms QA can be written as 
n^ = HAdQ^ (no sum on A), where HR = 1, HQ = R, and Hz = 1 are referred to as scale factors. 



The position vector of a point on the deformed configuration is given in terms of its cylindrical coordinates 
by 

X = r cos6i + r sm9j + zk = rer + zBz, 

where 

Br = cosfli + sinflj,    eg = — sin^i + cos^j,    BZ = k. 

Similarly to (3.9), the differential of this position vector can be written as 

dx = ^060, 

(3.10) 

(3.11) 

(3.12) 

where Ua = hadq'^ (no sum on a) are differential forms on the deformed configuration (with hr = hz = 1, 
he = r). 

Prom equation (3.4), we obtain 

dq" = 
df" 

"O - ^^dQ^, 
dQ' 

or, replacing coordinate differentials by their respective differential forms, 

ha df 
IjJa   = 

HABQ^ 
^A  = FaA^A, 

where 

FaA = TT^STTT       i^° ^um On either a or A), 

(3.13) 

(3.14) 
HA dQA 

are the elements of the matrix F of deformation gradients firom the differential forms on the reference 
placement to differential forms ^n the deformed configuration. 

The displacement of point P of the reference configuration to point p of the deformed configuration is 
defined by the vector field 

Prom this relation we obtain 

u = X — X. 

dx = dX + du. 

(3.15) 

(3.16) 

If we write the displacement field u in terms of its components UA in the orthonormal cylindrical basis of 
the reference placement, i.e.. 

u = UR'ER + i7eEe + Uz'E>z, (3.17) 

where the components UA are assumed to be functions of the reference placement coordinates {i?, 0, Z}, we 
find for its differential: 

du        = {UR,RdR + UR,edQ + UR^zdZ) Eij + UR dEfl 
+ (C/e.fidi? + Ue,ed® + Ue,zdZ) Ee + Ue dE© 
+ {Uz,RdR + Uz,ede + Uz,zdZ) Ez, 

'UR,e-Ue' 

+ 

+ 

Ue.R^R + (^^'^^ ^^) He + Ue,z^z   E© 

^..n.+ (V) fie + Uz,z^z (3.18) 



where UA,B denotes the paxtial derivative of UA with respect to QB.   This can be written, Mng the 
summation convention, as 

du = HABUB^A, (3.19) 

where HAB = UA;B are the elements of the matrix H containing the components C/^;B of the covariant 
derivative of u, distinguished by a semicolon in place of the comma. Explicitly, we have' 

H = 
UR,R iUR,e-Ue)/R UR,Z 

Ue,R iUe,Q + UR)/R Ue,z 
Uz,R Uz,e/R Uz,z 

(3.20) 

The Green-Lagrange strain tensor E is defined by 

E = -{dsi'dy.- c&-dK^ = - (dX ■ du + du • dX + du. du) , (3.21) 

where (3.16) was iMied to get the second equality. R-om (3.9) and (3.19), we have 

dX-du = (QcEc + T,RnR-Ez)-HAB^B^A = (HAB +T,RHzBSAR)SiAnB, 

after relabeling of dmnmy siunmation indices, and similarly, 

du-dX = HABilBEA-(ncBc + T^RQRBZ)  =  {HBA+T,RHzASBR)nAnB. 

Substitution of the last two results in (3.21) yields 

E = I^IHAB + HBA + T^RHZBSAR + T^RHZASBR + HCAHCBJUAUB = EABHA^B,        (3.22) 

where EAB = (HAB + HBA + T^RHZBSAR + T^RHZASBR + HCAHCB)/2 are the elements of the Green- 
Lagrange strain matrix E. Carrying out the algebra, we obtain the following expressions for the components 
of the strain tensor in cylindrical coordinates on the reference placement: 

ERR = UR,R + T,RUZ,R + i {u^^ + U^j, + U^^) , (3.23) 

„          Ue,e + UR ^ 1 
Eee = + - 

:UR,e -Usf + (l/e.e + URf + U, Z,B 
m 

Ezz = Uz,z + \ {Ulz + Ulz + Ul^), 

(3.24) 

(3.25) 

ERQ = Uzn I Tj,^^'® I ^^■e-'^e   .   UR,R(UR,e - Ue) + UeMUe.e + UR) + UZM Uz,e 
'     R R R , (3.26) 

E, BZ TT^ „ 4- ^g.e   ,   UR,ziUR,e - Ue) + Ue,z(UB,B + UR) + Uz,z UZB 
UB,Z + ^+ ^ '- (3.27) 

ERZ = ■dUR,z + Uz,R + T,RUZ,Z + UR^RUR^Z + Ue,RUB,z + UZ,RUZ,Z), (3.28) 



where EeR = ERB, Eze = Eez, and EZR = ERZ, i.e., E is symmetric. It is important to note that we 
are here taking over from the classical theory of laminates the fundamental assumption that the displace- 
ment components, hence the strain tensor components, are continuous through the coated membrane shell 
laminate. 

Using (3.12), (3.13), (3.9), and (3.19) in (3.16), we obtain 

FaB^Bea = f2^ EA + T^RQREZ + HAB^IE'EA = {6AB + T,RSAZSBR + HAB)(^B'EA, 

from which follows the useful relation: 

ea = {SAB + T,R6AZSBR + i^As) (F"^)BaEA = KAB{F-'^)Ba'EA = OAU'EA, 

where 

KAB = SAB + ^,RSAZSBR + HAB,       OAU = "EA ■ ^a = KAB{F~ )Ba- 

(3.29) 

(3.30) 

The matrix O with elements defined by (3.30) must be orthogonal, satisfying O'^O = 00^ = / (where 
the T-superscript denotes a transposed matrix), since both bases {ca} and {EA} are orthonormal. It is an 
example of a shifter [3, p. 9], in this case from one orthonormal basis to another. Assuming both bases to 
have been chosen as right-handed, the determinant of O must be 1, i.e., det(C') = det(0^) = 1. Prom the 
matrix form of the second equation of (3.30), i.e., O = KF~^ =^ F = O'^K, it then follows that 

J = det(F) = det(ii:). (3.31) 

where J = det{F) is the Jacobian determinant of the matrix of deformation gradients. It is easy to show 
from (3.6) and (3.11) that the shifter from the orthonormal cylindrical basis on the reference placement to 
the orthonormal cylindrical basis on the current configuration is given by 

O = 
cos (5-0)    sin (0-0)    0' 

- sin {6 - 0)    cos (0-0)    0 
0 0 

(3.32) 

Since F = O'^K we obtain, using (3.30) and (3.32): 

F = 
cos {6 - 0) - sin (0 - 0)    0" 1 + UR,R iUR,e - Ue)/R UR,Z 
sin (0-0) cos (0-0)    0 Ue,R l + {Ue,e + UR)/R Ue.z 

0 0             1 T,R + Uz,R Uz,e/R 1 + Uz,z 

which yields 

^e 

FrR = (1 + UR,R) cos (0 - 0) - Ue,R sin (0 - 0), 

= {^^^^^^) cos (0 - 0) - (l + ^^^^^) sin (0-0), 

Frz = UR,Z COS (0 - 0) - Ue,z sin (0 - 0), 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

FOR = (1 + UR,R) sin (0 - 0) -f Ue,R cos (0 - 0), 

Fee = (^^^^) sin (« - e) + (l + ^^^^) cos (0 - 0), 

(3.37) 

(3.38) 
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Fez = UR,Z sin (0 - 6) + Ue,z cos {0 - &), (3.39) 

F,R = T,R + Uz,R,       F,e = ^~-,       F,z = 1 + Uz,z. (3.40) 

Note that dv = JdV, where dV is a volume element on the reference placement and dv is a volume element 
on the current configuration. In order for the matrix F of deformation gradients to be invertible, we disallow 
the possibility that J = 0. We also disallow the possibility that J < 0, as that would imply that a volume 
element could have a negative volume. Thus, we require that 

J > 0, (3.41) 

where, from (3.30) and (3,31): 

J -1 + UR^R + Uz,z H o ^ I p I ^z,z o~^e.2 + UR,RUZ,Z 

+ \  5  I UR^R + I  —  I UR,RUZ,Z -^UQ^ZUR^R 

) Ue,R - (^^5.^) Ue,RUz,z + (^^^^) Ue,z T,R (3.42) 

+ I '""^„ '") Ue,z Uz,R - UR,Z T,R - UZ,RUR,Z - 0^^"^^^) UR,Z V,R 

R 

UR,B- Ue 
R 

UR,e- Ue 
R 

U&,0 + UR 
„ , UZ,RUR,Z H ^UR^ZUQ^R. 

4   Equilibrium Equatioi^ 

Equilibrium of a deformed body requires that both the net force and net moment of force on any part of the 
body vanish. The vanishing of the net moment is well-known to imply the symmetry of the Cauchy stress 
teMor o- (our notation for stress tensors follows that of Reference [4, pp. 134-136], and [5, Chapter 4]). 
Here, we begin with the force equilibrium equations written in terms of the Cauchy stress tensor, and then 
reformulate them in terms of the first and second Piola-Kirchhoff stress tensors. Let V denote the volume 
of an arbitrary part of the coated membrane in its plate-like reference placement, and denote by dV the 
boundary sur&ce of this part. Under the deformation / defined by (3.3), V is mapped to /(P), bounded 
by the surface df{V). In the presence of a gravitational body force fj, force equilibrium of the arbitrary 
deformed volume /(P) requires that 

f        a--nda + tgdv = f        aatmeada +  /       pgdv = 0, (4.1) 
Jaf(v) Jf(v) J8j(v) Jf(v) 

where a = (Tab^a^b, n = nc^c is the unit normal to the deformed surface, p is the mass density of the 
material, and % = geg = gEz is the gravitational acceleration (assumed to act in the "up" direction along 
the positive ^-axis in Figure 2), expressed in the orthonormal cylindrical bases. The surface integral can 
be written in terms of quantities on the reference placement using a version of Nanson's formula (see, for 
example, [6], p. 249, or [7], p. 88), viz., 

nada = JiF-^)AaNAdA, (4.2) 

where the N^ are components in the orthonormal cylindrical basis of the unit normal N to the surface 
element of area dA in the reference placement. The volume integral is transformed to one over the reference 
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placement volume by the substitution dv = JdV, where dV is the reference placement volume element. 
Making these substitutions in (4.1) yields 

/        aabnbeada+  /      pge^dv = 6    (TabJiF''^)AbNAeadA+  /       Jpge^dV 
Jdf(V) Jf(V) JdV Jf(V) 

= i   PaANAeadA+ f      poge,dV = 0,   (4.3) 
Jav Jf(v) 

where po = Jp is the mass density of material in the reference configuration, and 

PaA = JOab{F-^)Ab, (4-4) 

are the components of the nonsymmetric first Piola-Kirchhoff stress tensor P, which appears naturally in 
transforming from deformed configuration surface elements to reference placement surface elements. How- 
ever, (4.3) is expressed in term of components along the deformed configuration basis vectors BQ. The second 
Piola-Kirchhoff stress tensor S arises naturally by using (3.29) to shift to components along the orthonormal 
cyhndrical basis vectors Es of the reference placement, obtaining for the surface integral in (4.3): 

/     PaANABadA =   <f     PaANAKBciP-'^ha'EBdA =   6     KBcScANA'EBdA, (4.5) 
JdV JdV JdV 

where we identify 

ScA  =  iF-')caPaA  = J{F-')ca(Tab{F-')Ab (4-6) 

as the components of the second Piola-Kirchhoff stress tensor. Thus, we can write (4.5) as 

/    PaANABadA = /     KBcScANA^BdA =   f     TBANA'EBdA, (4.7) 
Jev JdV JdV 

where it was convenient to introduce yet another (nonsymmetric) stress tensor T with components defined 
by 

TBA = KBCSCA = {SBC + T,R5BZ5CR + HBC)SCA- (4-8) 

Using (4.7) in the force equilibrium equations (4.3) yields 

/   TBANAEBdA+ f     pogEzdV = 0. (4.9) 
JdV Jfiv) 

Prom (4.9) we infer that, just as the equations of equilibrium in terms of the Cauchy stress follow by an 
apphcation of the divergence theorem to convert the surface integral on the deformed configuration to a 
volume integral, yielding from (4.1) local equilibrium equations of the form 

(Jab;b + pg&az  = 0, (4-10) 

where the left-hand side includes the covariant divergence of o- in cylindrical coordinates on the deformed 
configuration, so also must the nonsymmetric stress tensor T satisfy local equihbrium equations of the form 

TAB;B + POQSAZ = 0, (4.11) 

where the left-hand side includes the covariant divergence of T in cyhndrical coordinates on the reference 
placement. Taking into account the nonsymmetric nature of the components TAB, the component equations 

12 



of equilibrium in the radial, circumferential, and axial directioi^, respectively, thim have the same form as 
those for the Cauchy stress in cylindrical coordinates (see, for example. Reference [8], p, 306): 

TRR,R + ^TRe,e + TRZ,Z + ^{TRR - Tee) = 0 ...(radial). (4.12) 

TeR,R + -Tee.e + Tez,z + „ (Ten + TRQ) =0 ... (circumferential). (4.13) 

TZR,R + -^Tze,e + Tzz,z + -^TZR + pog = 0 ...(axial). 

The definition (4,8) has the matrix form T = KS, hence can be written as 

T = 
■ 1 + UR,R        (C/fl.e - Ue)/R        UR,Z  " 

Ue,R        1 + iUe,e + UR)IR      Ue,z 
T,R + Uz,R Uz,elR 1 + Uz,z 

SRR SRe SRZ 

SRe See Sez 
SRZ    Sez   Szz 

(4.14) 

(4.15) 

where we have used the symmetry of the second Piola-Kirchhoff stress tensor in writing this. Carrying 
out the matrix multiplication, we obtain the following expressions for the components of T in terms of the 
components of S and the displacement vector components and their derivatives: 

TRR  = (1 + UR^R) SRR + — (UR^ — UB) SRQ + UR,Z SRZ, (4.16) 

Tke = (1 + UR^R) SRe + ^ (i7fl,e - Ue) See + UR,Z Sez, (4.17) 

TRZ (1 + UR^R) SRZ + ^ (£^fl,e - UQ) SBZ + UR^Z SZZ, (4.18) 

TeR = Ue,R SRR + l + -^(Ue,e + UR) SRB + Ue,z SRZ, (4.19) 

2ee = Ue,R SRQ + 1 + ^ iUe,e + UR) SBB + UB,Z SBZ, (4.20) 

Tez = Ue,R SRZ + 1 + ^ (I/e.e + UR) Sez + Ue,z Szz, (4.21) 

TzR = (r,ij + UZ,R) SRR + -^Uz,e SRB + (1 + Uz,z) SRZ, (4.22) 

Tze = (r,H + UZ,R) Sfle + 'n^z^e See + (1 + Uz,z) Sez, 

Tzz = (r,R + UZ,R) SRZ + 'nUz,e Sez + (1 + Uz,z) Szz- 

(4.23) 

(4.24) 
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5 Constitutive Relations 

Prior to applying a coating, a non-mechanical thermal stress due to CTE mismatch between mold and 
membrane develops as the two cool to room temperature following the annealing process. We denote this 
mismatch stress by S^"^. A coating of thickness he is then applied to the constrained membrane, and assumed 
to be perfectly bonded to it, hence fully constrained geometrically. The coating typically undergoes some 
microstructural change during the coating process, inducing an intrinsic coating stress 5""* (which may be 
either tensile or compressive). If the membrane is coated at a temperature different from the temperature 
at which the mold is stress-free, a thermal mismatch stress may also appear in the coating. 

We assume that both materials are linearly elastic, uniform, homogeneous, and isotropic, and that they re- 
main perfectly bonded after removal from the mold (guaranteeing continuity of the displacement components 
across their interface). As in [9], [10] and [11], we have begun with the full three-dimensional Green-Lagrange 
strain tensor EAB, including all geometrically nonlinear terms involving displacement components or their 
partial derivatives, as shown in equations (3.23)-(3.28). The choice of the Green-Lagrange strain tensor 
dictates a material rather than spatial description of the deformation, and we assume that in each of the 
two materials we have a simple uniform, linear, isotropic constitutive relation between the Green-Lagrange 
strain tensor and the second Piola-Kirchhoff stress tensor: 

SABi = SrSAB + -^—r^ [EAB + j^ (ERm + Eeei + Ezzi) SAB\ (5.1) 

where the subscript i denotes the ith layer of the laminate, and the constants Ei and Vi are Young's modulus 
and Poisson's ratio, respectively, of the component materials. The first term in (5.1) is a simple way of 
including the residual or non-mechanical stress in material i, which is assumed to be uniform and isotropic 
with constant value 5""*. It is a sHght generalization of the constitutive relation given by Fung [2, pp. 
354-355] intended to account for a thermal stress, in which case it is given by 

E- 

where e"™ = on AT is the thermal strain, Oj is the CTE of material i, and AT = T - To is the temperature 
deviation from some reference temperature TQ. It is assumed here to include possible intrinsic stresses in 
the materials so that, in general, the residual stress 5""* is a sum of intrinsic and thermal stresses. The 
component forms of the constitutive relations (5.1) can be written as 

SRRi  = 5f"*  +Si[{l- Ui) ERR + Vi (EQQ +EZZ)], (5.3) 

Seei = sr + Si[{l- Ui)Eee + Vi (ERR + EZZ)], (5.4) 

Szzi = sr + ^i [(1 - fi)Ezz + Vi (ERR + Eee)], (5.5) 

SRei = GiERe,       SRZi = GiERz,       Sezi = GiEez, (5.6) 

where we have introduced for convenience: 

^* - il + Ui)il-2ui)'        ^' - it^- , ^^-^^ 

6 Boundary Condition of Pressure 

To formulate appropriate boundary conditions for equations (4.12)-(4.14), we consider a shell that is in 
equilibrium under a difference in hydrostatic pressure on the images (under the deformation /) of the reference 
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placement faces Z = /i/2 and Z = —h/2. Such a pressure is always normal to the deformed surfaces, and 
oppositely directed to their outward unit normal vectors. Thus, traction boundary conditions are most easily 
stated in terms of the Cauchy stress tensor on the deformed surfaces: 

n ± _ ■p±n± ±».±,^n±Q±   — 
'o6"i nrda er = ■p^nfda^e^. (6.1) 

where the + and — superscripts denote evaluations either on the planes Z = h/2 and Z = —ft/2, respectively 
or, as in (6.1), on their images under f, and we have included for convenience the area elements da"^ in both 
sides of the second form of the boundary conditions. Using (3.29) and (4.2), the second equation of (6-1) 
can be reformulated in terms of quantities defined on the reference placement as follows: 

4,JHF- -')%NidA^K$siF-')%M ■p^jHF-')i,N^dA^K$s(F- 1\±     T?± 

which reduces, after applying the definitions (4.6) and (4.8), to 

■p±J±if±5(F-i).l(F- (6.2) 

The matrix products on the right-hand side of (6.2), viz., KF~^F~'^, where F""^ is the transposed inverse 
of F, are easily manipulated to the identity KF~^F~'^ = K'"^, using the relation O = KF~^ to replace 
F~^, and the orthogonality of the shifter O. Thus, after a relabeling of indices, the boundary conditions 
take the form 

' '"■'       ' (6.3) TteNi = -P^JHK- tAB^^B • 

However, we note that the outward unit normals to the faces Z = ft/2 and Z = —ft/2 are N+ 
N~ = -E^, respectively, so that iVf = ±SBZ on both sides of (6.3), hence (6.3) reduces to 

nz = -p^jHK -Ts± 
>AZ- 

Ez and 

(6.4) 

Itecalhng that J = det(F) = det(if), it follows that J^iK-"^)^ is just the matrix of cofactors of K^. Thus, 
according to (6.4), elements of the third columns of the matrices T^ and -p^J^iK'"^)^ mmt be identical, 
yielding the final forn^ of the boundary conditions of pressure: 

'■RZ -P^ 

■'■0Z  —      P 

■'^zz i^ + Utn 

(6.5) 

(6.6) 

(6.7) 

7 On the Derivation of Theories of Two-Dunensional Elastic Bodies from the 
Three-Dimeiwional Theory of Elasticity, Using the Method of Asymptotic 
Expansions 

We introduce dimensionless coordinates (/>,C), and scaled displacement components {U,V,W), a scaled 
reference configiu-ation ftmction T, scaled stress components SABU scaled residual in-plane stresses Si, scaled 
pressure loads p"*", and a scaled gravitational body force poi?, defined by the following relatiom: 

R = ap,        Z = hC, — ea^, 

r = e'"or,       Uz = e'"oW,       UR = e^aU,       Ue = e^aV, 

(7.1) 

(7.2) 
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.    SRRi = e"Si5flffi,       Seei = e"Si5eei,       Snet = e"Ei5flei,       5^" = e^Ei^f", (7.3) 

Sazi = £^'^iSRZi,       Sezi = e^YiiSezi, (7.4) 

Szzi = e'^'EiSzzi,       p=^ = e« E * p±,       apoi 5 = Si e* g, (7.5) 

where the Sj are two arbitrary constants with dimensions of stress (S+ = Eg, and E~ = Sc), and e = /i/o is 
the (assumed to be small) scaling parameter. The exponent values are arbitrary at this point, but typically 
satisfy the inequalities r<m<i<n<t<p<q. It should be noted that the original variables are 
functions oi R,Q, and Z, e.g., UR = UR{R, 0, Z), while the scaled variables are all functions of p, 0, and C, 
e.g., U = U{p, 0, C) = {'i-/o,s^)UR{ap, 0, hsQ- Prom these definitions, we obtain the following expressions for 
the partial derivatives of the displacement components, and the ordinary derivative of the surface-defining 
function F: 

UR,R = e^U,p,       UR,e = e'af/,e,       UR,Z = e^'^U,^, 

Ue,R = e%,       Ue,e = e'aV,e,       Ue,z = e'-'V,^, 

Uz,R = e"'W,„       Uz,e = e"'aW,e,       Uz,z = e'^-'W,^,       T,R = e'f,^. 

Substitution of these expressions into equations (3.23)-(3.28) for the strain components yields: 

ERR = e'U,, + e-+"'f,pW,, + ^[e^"^Wl + e''(^U^ + V^,)] , 

^-. , (2^), ,^^ . ,' {U,e - vy + {V,e + U)' 
2p2 

Ezz = £'"-'w.c + e^™-^ ^w| + e"-^ I (r/fc + v;2), 

ER0 -\[^{v..'- B-V\ ^ ^r+m ^,»W,e ^ ^^mW.,W,e 

+ e 2/ uAu.B-y)+yAy,e+u) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

EQZ = \ {^'-'^" p p P }■ 
ERZ = - 

(7.13) 

e^-i f/,^ + e^'W^p + e'-+'"-if,pW,^ + e^^-^W,pW,^ + e^^-^ (C/.^f/.^ + %V,^)] .        (7.14) 

Substitution of (7.1)-(7.5) in (3.34)-(3.40) yields for the scaled deformation gradient matrix elements: 

FrR = (1 + e^U,p) cos (^ - 0) - e% sin {9 - 0), (7.15) 

Pre = e' 
U,e-V j cos(e -0)- l + e' ilV,e + U sin (0-0), (7.16) 

Frz = e^'^Ux cos (0 - 0) - e'-^Vx sin (6 - 0), (7.17) 

FOR = (1 + e^U,p) sin (0 - 0) + e'V.p cos {6 - 0), (7.18) 
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Fee = en^^^^]sm(e-e) + 1 + e- ilVe + U cos(#-0), (7.19) 

Fez = £     Ux sin (fl - 0) + e*"^F,< cos (^ - 8), (7.20) 

F.K = e" r ^ + £"» W,p,       F,e = e"* 2^,       F,^ = 1 + e"-^ T^.^. (7.21) 

The scaled Jacobian determinant (3.42) takes the form 

J =1 + e—i W,c + e' lu,p + ^®+i^ I ^ .'+—1 + e^ W( I E/.P + — I - W,pU,i - -^V,c 

+ e- 11 U.. 
V.e + U\     -     U.e-V 

V, -<+r-l r.p£/.< 

+ e U+m-l V.e + U {u,,w,^-w,,u,^) ^    (W<-^.Fc) 
(7.22) 

+ -^{Wc-t?.pKc) + e 2l+r-l ■ aa^W,_  !>+££;, 

The scaled expressions for the strain tensor components are to be substituted in the constitutive relations 
(5.3)-(5.6). We begin with (5.5) for Szz, from which we obtain 

1 /.-,, 

+ vAe'-     £/„ + 

e^-^W,^ + e^—=±^1 + £2^-2 i ^t;2 ^ ^2 ^ 

+ £'■+'"r „w„ + £*"• I -w^ + —^ (7.23) 

The last two ofF-diagonal constitutive relations for the out-of-plane stress components yield the scaled rela- 
tions: 

^^^iSRZi = Y i^'"' ^.< + ^"W,p + e''+'"~'r,pWc + e^"'-^W,pW,( + e^'-^ (U^pU^ + %¥,()] ,   (7.24) 

e''E,Sezi = % L^-^F.^+£-2:^+ e2-iE<Ee + ^2.-1 y.((t/.e-F) + F,c(Fe + C/) 
P 

,   (7.25) 

respectively, and the scaled version of the off-diagonal in-plane constitutive relation (5.6) has the form 

e"S.SHe. = ^W    Vp+ '^^^) + e--^^^ - ^-^^'^ -He" 

-t- e 2f 

P 

(7.26) 
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The final two constitutive relations (5.3) and (5.4) take the following forms: 

,    ■■2m "',&    ,   p2t {U,e-V)^ + {V,e + uy 
(7.27) 

+ e-^W,c + e^-^ \w^, + e''-' 1 ( f/f, + V^ ) | V 

and 

(t/.e - V)^ + {V,e + U? 
2/)2 

(7.28) 

Next, applying the scalings obtained in (7.1)-(7.5), (7.6)-(7.8), and (7.9)-(7.14) to the right-hand sides 
of equations (4.16)-(4.24), we obtain the stress components TABI in terms of our scaled variables: 

TRRi = e" HiSRRi + e"+' Ei WpSRRi + ^'^'^SReA + e'^"-' Ei U,iSRZi, (7.29) 

TRei = e"Ei5fl©i + e"+'Si (f/.pSfiei + ^'^^Seeij +£'+""' l^iU^Sezi, (7.30) 

Tflzi = e" SiSflZi + eP+' Si (u^RZi + ^'^'^Sezij + e'+'-' ^A^Szzu (7.31) 

Teiii = e" EiSfiQi + e"+' S^ Iv^RRi + ^^^^J^SRQ-] + e'+P'' Eif^c^flZi, (7.32) 

Teei = e" ^iSeei + e"+' Si f i>p5flei + ^^"^^gee.j + £'+"-' Si^.^Sezi, (7.33) 

Tezi = e" Si5ezi + e'^^ Si f V^pS^^i + ^'^'^^Sezi j + £'+«-^ Eif^c^zzi, (7.34) 

TzRi = e" Ei5fizi + £••+" Si f,,5iifli + £"•+" Si f W^.^Sfl^i + ^^/eei J + £'"+"-' Si^.^SflZi, (7.35) 

Tzei = e" Si5ezi + £''+" Si fjRei + e^+^ Si (wjaei + ^5eei j + e"'+^-' Sify,^5ezi, (7.36) 

Tzzi = e' SiS^zi + e-'+PEi f.^S^zi + e'"+PSi ( PF,p5flZi + ^5©zi J + e'^+'-i SiW,c5zzi. (7.37) 
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Substituting these scaled expressions in the equilibrium equations (4.12)-(4.14) yields equilibrium equation 
in terms of the scaled components of the second Piola-Kirchhoff stress tensor: 

1 
+ - 

P 
e- SRBi,e + £"+' ( UjRBi + ^^-^Seei ]    + e'+^-' {ujezi) 

,© 

+ e"-' SRZi,i + e^'-' (ujRZi + ^^^-^Sezi)   + e^+'-=^ (ujzzi) 
,C 

0, 

(7.38) 

e" SRei,p + £"+' (vjRRi + ^^^j^SReA    + e'+''-' {vjRZi) ^ 

1 
+ - 

P 
e" SeBi.e + e^+' (vjaei + ^^y^Seei J    + e'^"" ' {vjszi) 

,© 

+ e"-' Sezi,i + e^'-^ (vjRZi + ^^^^S^zA   + £'+'"= (^.<^^^i)_^ (7.39) 

+ -|e"SH©i + e"+' fF,5Hfi» + ^^^^&eij +£*+''-'F.^S^^i 

+ e" Sflei + £"+' fc?,p5flei + ^'^    ^SeeiJ + e'+P"^ C/.cSesi = 0, 

' Sflzi,p + £'■+" (f.pSBfli) ^ + £*"+" {wjRRi + ^5flei J    + £"*+"-' {WJRZ)^ 

+ £"5621,6+£*■+" {r,,SHei)^^ 
W.B-^ 

+ £'»+" ( WpSflei + ^^See* I    + £ ,m+p- ■' (WcSezi) 

+ e'-' Szzu + £'"'■'"' (f .,5flzi)   + e^+^-^ (W^RZI + ^^Sez,)    + e'"+'-' (w^,c5^^i)^^ 

1 
+ - 

P 
e" SRZi + £*■+" T,,SRRi + £"•+" ( W.pSHBi + ^^SRQi I + £'"+"-' W,SRZi + £*? = 0, 

where the gravitational body force has been assumed, as stated earlier, to scale as follows: 

(7.40) 

(7.41) 
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Finally, assuming that the pressures p^ scale like the stress tensor component Szz, i-e., 

p± = e«E=tp±, (7.42) 

our boundary conditions (6.5)-(6.7) take the following scaled forms, after eliminating common factors of S^*" 
on both sides of each equation: 

^§^^+6"+' ^RZ C/^5±   +    -^  '.p'^RZ •^ez 

=   £9+" p± W^   -  £'+'"+< 

,      t+q-lff±q± 

w%^,f - w^(v^ + u^ 
(7.43) 

e^S^^ + e^' ^ez vMz + 
vi + u^\^. 

= e«+'"p±^ + e' 

^ez 
,   .q+l-li>±q± 

zz 

W%U^p - T^.^ (^.1 - i^^) 
(7.44) 

P^ 

ws^. 
e'Sf^ + £-+" f W^±5|^ + -^S%A + e'+^-^M^IS: zz 

= -e'p±-£«+Mf/± + 
^e + f^='\^ ±  _  -9+2/ ei CEti^i' -y^ 

(7.45) 

The method of asymptotic expansions proceeds from this point by introducing asymptotic series expan- 
sions in a new parameter 5 — e*^ (where /x is yet another exponent) for each of the scaled stress tensor 
components, as well as each of the scaled displacement components and its partial derivatives. Thus, denot- 
ing by X and y any two such components (or partial derivatives of displacement components), we set 

2=5:^* Hk), y = E^ * 27(A), {S = e>^). (7.46) 
fc=0 *=o 

Various theories of two-dimensional-like bodies are obtained by making particular, essentially ad hoc, choices 
of the scaling exponents in equations (7.2)-(7.5) and equation (7.46). For example, if we follow Tarn [12] and 
set r = m = 1, i = n = 2, t = 3, p = 3, q = A, and /x = 2, we obtain a generalized geometrically nonlinear, 
laminate shell theory (equivalent to von Kdrmdn plate theory when specialized to a single material that is 
initially flat, so that hc = 0 and T{R) = 0, and gravitational body forces are ignored). If, on the other hand, 
we follow the work of Erbay [11], and set r = m = 1/2, e = n = 1, t = 3/2, p = 2, q = 5/2, and fi = 1/2, 
the leading order equations are a generalization of geometrically nonlinear membrane theory (equivalent to 
Hencky-Campbell membrane theory [13, 14] when specialized to a single material that is initially flat, and 
gravitational body forces are ignored). We have also found that by setting r = 1, m = 2, ^ = n = 3, i = 4, 
p = 4, q = 5, and fj, = 1, the leading order results are those of a geometrically linear, laminate shell theory 
(equivalent to classical laminate theory [15] when T{R) = 0), while r = m = l, f = n = 3/2, t = 5/2, p = 3, 
q = 7/2, and fj, = 1/2, yields a theory of a geometrically linear membrane laminate. These characterizations 
of various theories by particular choices of the scaling exponents axe tabulated in Table 1. In the Sections 
that follow, we develop each theory based on the choice of exponents indicated in this Table, where the terms 
"shell" and "membrane" distinguish the dependence of the leading order in-plane displacement components 
on the axial coordinate Z: for a membrane they are independent of Z, for a shell they are linear in Z. 

20 



Geometrically Nonlinear Shell 

r 

1 

m 

1 

e 
2 

n 

2 3 

P 

3 
Q 

4 2 

Geometrically Nonlinear Membrane 

r 
1 
2 

m 
1 
2 1 1 

t 
3 
2 

P 

2 

g 
5 
2 

1 
2 

Geometrically Linear Shell 

r 

1 

m 

2 

1 

3 

n 

3 4 

P 

4 5 1 

Geometrically Linear Membrane 

r 

1 

m 

1 

e 
3 
2 

n 
3 
2 

t 
5 
2 

P 

3 7 
2 

1 
2 

Table 1: Values of scaling exponents for various theories. 

8   Geometrically Nonlinear Shell Laminate Theory 

Following the work of Tarn [12] we set r = m = 1, £ = n = 2, t = p = B, and q = 4'm. equations (7.2' 
Thus, we have 

r = eaf,       Uz = eaW,        UR = e^aU,       Ue = e^aV, 

SRRI  =  B ^iSnRi 

Snzi = £ SjSii^t,        Sezi = £ ^iSszu 

Szzi = e^'SiSzzi,       P^ = e*S±p^,       apoig = Eie^g. 

8.1   Leading Order Results Obtained by Scaling of the Constitutive Relations 

Beginning with the constitutive relation (7.23) for SzZ; we obtain 

-(7.5). 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

e*^iSzzi = e^SiSf" + 6^(1- Vi W,< + \wl + e n+n 

+ vi[e^ (u. , + T,,w,, + -wl + 2p2 + 
(8.5) 

+ 0(6^ 

Again following Tarn [12], we set /i = 2 in equation (7.46), and find for the product of any two of the 
asymptotic expansions (7.46), to tenth order in e (recalling that ^ = e** = e^): 

2»= E E^^*'^*'^%.)y('^=^)' 
fcl=0 fc2=0 

£(o)S(o) + P(o)?(i) + Hi)Vm] ^ + [^(0)5(2) + ^(i)»(i) + %2)f(o)] e* 

+ [3^(0)^(3) + ^(1)1/(2) + ^(2)^(1) + a;(3)l/(o)J e 

+ [^(0)^(4) + Hi)Vm + %2)S(2) + 2(3)5(1) + %)S'(o)] e 

+ [%o)y(5) + %i)S(4) + %2)y(3) + H^)V(2) + %4)y(i) + 2(5)%)] e^° + 0(£ 

(8.6) 

12% 
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Substituting in equation (8.5) the asymptotic series for each of the variables, we obtain 

1; 
Wiou + Mu + ^'    ^(i).C + 2W^(0),C ^(i).C 

+ '^i 

V(o).e + t/(o)  , %),e + 
P 2p2 

The leading order term of this relation yields our first important result: 

^'{uioU + ^,pW(ou + \wlo),, 

+ 0{e*). 

(8.7) 

(8.8) 

Thus, W(o),^ must satisfy either W^o)x = 0, or W(o),^ = -2. In order to ehminate the second possibility, we 
appeal to the form of the Jacobian determinant under the scalings being considered, viz., firom (7.22): 

Vc + U      —   /-       VB + U\     — -       Wp,^       -   - 

+ £" u., U,e-V 
PI     '^ \    p    J     \    p 

U,e-V\ rr, ^      ^ .-%      s   r, \      W. 

+    ^^    {u,pW,c - W,Ai - f,, C/,c) (8.9) 

(y,,w,i - w,,v,i - f ,p Kc) + -^ {v,,u,^ - t/.pv;c) 

In the limit e -> 0, the condition J > 0 implies that we must have W^Q-^^Q > —1, which precludes the second 
possible solution W^(o),c — ~2. Thus, we must have 

W^ou = 0 W(o) =w{p,e), (8.10) 

where «; is an arbitrary function of p and 0 only.  Under these conditions, equation (8.7) reduces, after 
dividing through by e^, to 

e TiiS^o^zzi = '^iSi'"^ + £i (1 - Ui)     W(i),c + 
'^W.C + ^(o).C 

Vi  f f/(o), 
1^2   , t^(o),e + t/(o)     tg'^ 

+ r «u;.o + -w„ + + 7;^]+ Oie') 

(8.11) 

The leading order term on the right-hand side of this equation yields another relation that will be needed 
later: 

j^„, + Su±^._^ 
(1 - Ui)£i     l-Vi 

V(o),e + ^(o)  , <e 
P 

Uiou + r,p^.p + ^wl + -^""-^  '^"' + 2^ I . (8.12) 

Next, consider the two off-diagonal constitutive relations (7.24) and (7.25) for the out-of-plane stress 
components. With the present scalings, we obtain 
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e TiiS&zi = 
Gi |>   , W,e  ^ W,(W,e\ ^ \.2(u.dU,B-V) + V,dVe + U) (8.14) 

where a common factor of_e was cancelled in both expressions,   Hrom the leading order terriM of these 
expressions, recalling that W{o),( = 0, we obtain the following two equations: 

a ^ i^ W ft 

which can be integrated to obtain 

U(o) = S(p,e) - Cwp,        and       % = v(p,@) - C^^, (8.15) 

where u and v are arbitrary functions of p and 0 only,   Thm, the leading order results have provided 
non-dimensional forms of the well known Kirchhoif-Love expressions for the displacement components. 

The scaled version of the off-diagonal in-plane constitutive relation (7.26) reduces under the present 
scalings to 

StSnei 
Gi 

Va + 
t/,e-F     r,,W,e , W,,W,e\       , / t/,p([/.e - F)-^ F^CFe +1/ + + + e' 

where a common fector of e^ was cancelled. Thus, to leading order we obtain 

T' Q - ^i (cr       ,   ^(o).e - F(o)     V,pw,e   ,  Wpwe 
2   \^ ^ '"^ p p p 

Introducing an in-plane strain component CRQ defined by 

efle-2 (F(o),p+ ^ + __ + __!, 

V*) + 
_ 1 
~ 2 

u,e — V . r.oiB. 

P P \   P        P^ / 

(8,16) 

where we have introduced C-independent terms in the last Une defined by 

2 \ P P p    J 

we can write this constitutive relation as simply 

n2   ' kne = (8.17) 

(8,18) 

The final two constitutive relations (7.27) and (7,28) take the following fornm under the present scalings: 

e^SiSflfli = e^SiSf" + £i\{l- Vi)e^ I U,^ + T,pW,p + ^W^ f>. 1; 

+ Vi 
..,V,e + U  ,   W%\ , ^^    _   1^,   ^  „2ft/.|+F| + 

2ffi 
+ W,( + -Wf^ + e 

(8.19) 

+ 0{e% 
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and 

e'SiSeei = e^^iSr^"" + S, ,{,:-.,. (2^ u    w^' + ,e 
2p2 

+ i^i ( U,, + f,,W,, + \wf^ )+!?,< + \wf^ + eM-^ [/2+v;2' 
(8.20) 

+ Oie'). 

The leading order terms involving W^ in these expressions vanish according to (8.8), and (8.12) can be used 

to replace the second-order terms involving W(i),^, yielding 

Si5(o)flfli = SiSf"" + £ilil- Ui)eRR + Vi i[{l-Vi) eee - 
T.iSr 

and 

Si5(o)eei = SiSf" + fi< (1 - Vi)tee + I'i •i|(l-^i) Cflfl 

(1 - t'i)£"i     1 - t-i 
(cflfl + eee) 

(cRfl + eee) 
(1 - Vi)£i     l-Vi 

where we have introduced scaled in-plane strain components tRR and eee defined by 

tRR = U^o),p + f,pu5,p + 2«'fp = 2,p + T,pw,p + ^w'^p - Cw,pp = ^RR - C^RR, 

(8.21) 

(8.22) 

(8.23) 

eee =  + 2^ '      p      + 2p2      ^ [ p   ^    p'  ) ' ^^     ^^^- ^      ' 

The C-independent terms appearing in the last two equations are defined by 

^RR  = ",P + f ,pWp -I-  -W% , kRR  = W,pp, 

and 
.TV2 w ,© 

+ V '     *^® " 
w,p   ,  w.ee       Ci'.p 

-h 

Replacing Si by its definition (5.7) in (8.21) and (8.22), and simplifying the results, yields 

^iS(Q)RRi = S»^t + , _  2 (^.Rfl + t'tCee)) 

(8.25) 

(8.26) 

(8.27) 

Ei 
St5(o)eei = SiSj -I-      ' g (eee + mRR), (8.28) 

where 

5. ^ V^5r 
l-I/j 

(8.29) 

We conclude this Section by rewriting the important results in terms of leading order variables, that are 
functions of the physical coordinates iZ, 0, and Z, viz.. 

u = e^au, V = e^av,       w = eaiv (8.30) 
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U^o)z = eoW(o) =w,       U^o)R = e^o% = u - ZW^R,       [/(o)e = e^aVm = v - Z^,    (8.31) 
Ji 

S(o)Rei = s EiS(o)iie» = GiCjie, (8.32) 

Ei 
Sio}RRi = e StS(o)ijiH = 5i +      * 2 (^RR + "tcee), (8.33) 

where 

Ei 
S(o}eei = s SiS(o)eei = 5^ +    _* ^ (eee + t'jeiiJi), (8.34) 

CRQ = e €RQ 
R R R R        iJ2 

€%Q - ZkRQ,   (8.35) 

ejw = e^eRR = UR + T^RW^R + -w% - ZW,RR = e%ji - ZURR, (8.36) 

- ^2- v,e + u t« ,© 

R      '  2i?2     " V il   "^   ip"} - ^©Q ~ ^*®®' 

the .^-independent terms of the last three equations are given by 

Kfle = ;;—I  12 ii2' 

(8.37) 

(8.38) 

e«H = w,iJ + r,fl«;,H + -^v^R, kRR = w ,RRi (8.39) 

0    _ f.e + M ^ wfe 
'®® - ~r~ + 2F *ee = —?:—I  

R    '    R^ ' 

and in (8.33) and (8.34) we have introduced the in-plane residual stresses defined by 

0% — £   2jj Oi ,   =   iZ^.2^.& 
1- Vi 

e'^E'S"'" = i £9"'' Ei 

1-Vi 

(8.40) 

(8.41) 

where the last equality of (8.41) follows from (5.2), and refers to the particular case where the residual 
stresses are purely thermal in origin. 

Note that only three in-plane constitutive equations (8.32), (8.33), and (8.34) are obtained as leading 
order results, from which the associated in-plane stress components can be determined in terms of the 
displacement components. The other constitutive relations provide the leading order (Kirchhoff-Love) forna 
(8.31) of the displacement components, but the associated out-of-plane stress components will be shown 
later to be determined in terms of the in-plme stresses via first integrals of the equilibrium equations. 
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8.2   Equilibrium Equations to Leading Order 

Under the scalings of this Section, the equilibrium equations (7.38)-(7.40) can be written as 

£' SRRi,p + e* (ujRRi + ^'^    ^SROA   + e" {V,^SRZ) 

1 + - 
P 

U,Q-V-- 
e' SRei,e + e" f V^R^i +   '^       Seez J    + e" (f/.c^ezi) ,e 

V.^-V- 

+ -le^SRRi + e^ lujRRi+^'^'^SRei] +e*U,cSRZi 

e'^Seei + e' Iv^Rei + ^^^^^SeeA +e^V,<;Sezi = 0, 

1 + - 
P 

e' SRei,p + e" (v^RRi + ^^^^J^SROA    + e" (^.C^flZi)^ 
\ / ,p 

+ e' 5ezi,c + B" [v^pSRZi + ^'^"^^5ezij   + e* (v.c^zzi) ^ 

.© 

+ £' 5fl©i + e" f f/,pSfiei + ^'^    ^geeij + e" C/.c^ezi   } = 0, 

(8.42) 

(8.43) 

.3c__.   ^^^{^^^SRR^   +eMW,p5Hfii + ^Sflei)   +e' (w^.c^AZi) ^ + eM W,pSRRi + ^^Sflei I   + e' 
\ / ,p 

1 + - 
P 

W 
e^ Sezi,e + e^ 

+ e' Szzix + B^ (r,p5flzi) ^ + e" ( W^,P^flZi + ^^Sezi J    + e^ (w^.c^zzi) ^ 

(r,pSflei) Q + eM W^,p5flei + -f-Seei J    + e' (w.c^ezi) 
,© 

,c 
1 + - 
P 

W. ,©; e^ SRZi + e^ r,pSRRi + e^ I W,pSRRi + -^SRet 1 + e^ W.^^AZi + e^? = 0 

To leading order, using the earlier result W(o),^ = w ^ = 0 in the third equation, we thus obtain 

--^Cojiiei.e + '-'(o)i?zi,c H— S{o)RRi,p H—^(ojiiei.e + S'(o)i?zi,^ H— (^5'(o)fifii - 5(0)601] = 0, 

(8.44) 

(8.45) 
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- 1 - - 2- 
S{o)Rei,p + -5(o)eet,e + 5(o)e2t,c + -S(o)Rei = 0, (8.46) 

w,p5(o)iejit + ^-S(o)Bet + 5(o)K2i] ^^ H— i^,pS(o)Rei + —z~S(o)0ei + S(o)e2» 

+ 
J,e 

^,p5(o)ji2t + -^S^o)ezi + S(o)zzi     + - 
We 

^,pS(o)RRi + —5(o)Hei + S^o)RZi 

(8.47) 
+ 5 = 0, 

where we have introduced in the last equation a new p and S-dependent fiinction Q defined by 

w(p,0) = iSip,Q) + f(p). 

8.3   Scaled Boundary Conditions of Pressure 

The boundary conditions of pressure, equations (7.43)-(7.45), are given under the present scalinp by 

(8.48) 

e'5±   +e« 'RZ UpRZ + 
ut-v^\^ 

+ e'Upiz 

= e^p^W^ -e'' 
W^.I^?-Wf(F| + t/-fc) 

P*, 

(8.49) 

e'5±   +es 'ez VJ5|,.    ll±£;U. 
BZ + £'^<% 

Wt^, 

W l^.t-W^.f (g.|-^^) 
?^ 

e^ S|^ + £4    |^±5±   + ^5|      + ^41^±^± 
,P'-'RZ 

= -e*p± £M^.p + 

,< "^zz 

P±-£8 .j(£l±^)_,,f2l^' s-± 

To leading order, they reduce to 

(8.50) 

(8.51) 

^(a)Rz 0, '(o)ez "'       ^(o)z'z — ~P ̂± 

where the derivation of the last result for S 

and the fact that W^-^^^ = 0. Stated in terms of physical function of the physical coordinates, these talc 
the forms 

mzz required the previous two results for Sj|j^^ and S^^JQ^ 

(8.52) 

'± 
BZ 

'B 

^(0)RZ — 0' "^(0)6^ n       T^ 
^   ^    •^10)ZZ = -e*S=tp± = _j^. (8.53) 

8.4   Leading Order Equilibrium Solutions for the Out-of-Plane Stress Components 

In terms of leading order physical functions of the physical coordinates iJ, 6, and Z, the leading order 
equihbrium equations (8.45)-(8.47) are given by: 

S(o)RZi,z + S^o)RRi,R + ^ (S(o)ije«,e + 5(o)flHi - S(o)eei) = 0, 
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S{o)ezi,z + S'(o)flei,R + ^ (5(o)eei,e + 2 5(o)Ret) - 0, (8.55) 

[w,ii5(o)fiZt + -^5(o)ezi + '5(o)zziJ ^ + -^ [^,RS{o)Rei + -^S(o)eei + 5(0)621] ^ 

+ [w,flS(o)Rffi + ^5(o)fiet + S[o)RZi]^ii + -^ [wfl5(o)/jfii + -^5(o)flei + S'(o)flZiJ + /3oi5 = 0, 

where 

w(i?, 0) = £ a w(p, 0) = w{R, 0) + r(i2). (8.57) 

Equations (8.54)-(8.56) can be rewritten as 

S{o)RZi,z + ^ [('R5(o)flRi)_;j - 5(0)661 + 5(o)fiei,e   = 0, (8.58) 

i?2 

and 

S(0)eZi,Z +   p2 (-^^ 5(o)R6t),fl + ^ 5(0)661,6 - 0. (8.59) 

[w,fi5(o)fi2i+-^5(o)62ri + 5(o)zziJ ^ + -^ [w,fl5(o)Rei +-^5(o)6ei+ 5(o)6ZiJ ^ 

+ -^ {RS(o)RZi)^R + ^[^ (w,fi5(o)fiRi + ^5(o)fiei)]_^ + Poi9 = 0, 

(8.60) 

respectively. Now, according to (8.32)-(8.40), 5(o)fiei> S^o)RRi, and 5(o)eei are linear functions of Z, with 
coefficients depending only on R and 0, hence equations (8.58) and (8.59) can be written as 

5(o)fiZi,z + aoiiR,Q) + Zau{R,Q) = 0,       S(o)ezi,z + boi{R,@) + Zbu{R,e) = 0, (8.61) 

respectively, where aoi, au, 6oi. and bu are rather compUcated Z-independent functions. These two equations 
can be easily solved to obtain 

S(o)RZi + Zaoi + -^011 = -PflZi-       5(o)6Zt + Zboi + "g"^" = ■^©•^»' (^-^^^ 

where FRZI and Fezi are arbitrary functions of R and 0 only. Applying the first two boundary conditions 
of (8.53), we obtain from the first and second equations of (8.62): 

„ h h^ „ h h"^ ,„ ,,, 
FRZB = 2 '^^ "^ T °^*'        ^^'^ ~ ~ 2 ""^     Y °^'" 

and 2 2 

respectively. For a two-layer laminate, the solutions for the stress components in the two materials can thus 
be written as 

5(o)fiz. = {^-z) «o. + l{h'- 42^) a:.,       S^O)RZC = " (^ + ^) °O^ + ^ C^' " 4^') ^i-   (8-65) 

and 

5(o)6z» = (^ - ^) ^0. + ^ (/»' - 4^2) 6i.,        5(o)6Zc = -[l + z)boc + l {h' - iZ') &io,   (8.66) 
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respectively, where i = l = c denotes the coating and i = 2 = s denotes the membrane substrate. 
Next, we note that since 5(o)HZi and S(o)e2t are quadratic in Z, the axial equilibrium equation (8.60) 

can be written as 

[u,RS(o)RZi + ^S^o)ezi + S^o)zz^]     + coiiR, &) + Z cu(R, 0) + Z^ caiR, Q) = 0, (8.67) 

where CQ,, CU, and C2i are complicated functions of R and 9 only (note that cm includes the term poig). 
The general solution of (8.67) is 

w A Z^ Z^ 
w,fi%)iizi +-^%)ezi + %)2rzi + ZcoiiR,®) + -j-cii(i2.0) + Y^siC^^) = Fzzi(R,e),  (8.68) 

where Fzzi is another arbitrary function of R and 0 only. Applying the three boundary condition of (8.53), 
we obtain 

c. +      h h^ h^ , „ _      h h^ ft3 
tzzs = -P   + -Cos + ycis + 24*^2^'  ^^^zz<= = -P   - 3*^= + y^i^ ~ Ji^^^^* ^^'^^ 

The solutions for this stress component are thus 

(8.70) 

in the membrane substrate, and 

Sio)zzc = -P- - (I + ^) coc + I (h^ - 4Z^) ci, -^ih' + 8Z^) 0 
(8.71) 

in the coating. 

8.5   Continuity Conditions on the Out-of-Plane Stress Componente 

Requiring that the stress components S(o)ii^ and S(o)ezs be continuoim at the interfswe Zi = {he - fts)/2, 
we find from (8.65) and (8.66) that we must have 

S(Q,)RZs{Zl) - S^o)RZciZl) = hsOOa + KUQC + x ^c ^s {o-u - Olc) = 0, (8.72) 

and 

S(o)BZs(Zi) - S(o}ezciZi) = hshs + hchc + r^c^s (hs - he) = 0, (8.73) 

respectively. Assuming these continuity condition to hold, the continuity condition for S(p)zz at the interface 
follows from equations (8.70) and (8.71), viz., 

Sio)zzsiZi) - S(Q)zzc{Zi) = p + hsCos + hcCoc + -hchs {cu -cu) 
(8.74) 

where 

+ ^h (3/1? + hi) C2. + ^hc {Bhl + hi) C2C = 0, 

p = p   - p+ (8.75) 
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is the pressure difference between the lower and upper faces of the deformed configuration. Equations (8.72)- 
(8.74) represent conditions that must be satisfied by the fourteen Z-independent functions ooi, an, &oii ^i») 
coi, Cii, and C2i (i = c or s), in order for the out-of-plane stress components to be continuous across the 
coating/membrane interface. 

To faciUtate the development of the continuity conditions, we first separate each of the in-plane consti- 
tutive relations (8.32)-(8.34) into its Z-dependent and Z-independent parts: 

S{o)RBi — f^RBi - ZrjROi,       S^o)RRi = ^Ri - ZrjRi,       5(o)eet = "'ei - Zr]ei, (8.76) 

where 

cTRei = Gi€^Q,       TjRQi = GikRo, (8.77) 

(TRi = Si + Qi (e^fl + Vie%e),       rjRi = Qi {kRR + Vikee), (8.78) 

CTet = Si + Qi (eee + Vie%),      rjei = Qi (fcee + t-i^iifl) • (8-79) 

In (8.78) and (8.79) we have introduced material parameters Qi, defined in terms of the moduli and Poisson's 
ratios by 

Qs = T^,       Qc = j^, (8.80) 1-1/2 1_^2 

and firom (8.38)-(8.40), the Z-independent "strains" and "curvatures" are given in terms of the leading order 
displacement components by 

0    -^f      , u,e-v , r,flw,e   ,   ^^.flw,e^ ,      _    w.fle  , w,e ,„„,, 
4e = 2 (^'.« + —R- + -R- + —^j'       *«^ = —R- + :RF. (8-81) 

e5{fi = u^R + r,H«;,fi + -w%,        kRR = W^RR, (8.82) 

The development of the continuity equations first requires identification of the fourteen Z-independent 
functions aoi,au,boi,bu,coi,cii, and C2i (i = c or s). Comparison of (8.62) with equations (8.58) and (8.59) 
yields 

ooi + Zaii = — URS(o)RRi) ^ji - 5(0)661 + S(o)Rei,e , (8.84) 

boi + Zbii = "m (-^ S(^o)Rei),R + ■pS(^o)eei,e- (8.85) 

Similarly, comparison of (8.67) with (8.60) yields 

coi + Zcii + Z^C2i =  p |w,fl'S'(o)ieei + -^5'(o)ee» + 5(0)6^1] 

+ j (i?5(o)i?zi)_^ + M^ {'^,RSio)RRi + ^5(o)flei)] ^ + poi g.   (8.86) 

Substituting firom equations (8.76) in the right-hand sides of (8.84) and (8.85), we easily find 

oi =  D \{R°'Ri),R - <^ei + crRei,e\,       au = --^ [iR'nRi),R - Vei + ilRei,e aoi 
it L '-- J 
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hi = ^{R fjieO.fi + -^o^Bi,e,       hi = -^{R^r]Rei),R - ^»7et,e) (8.88) 

for either i = cor s. Substituting from equations (8.76), (8.65), and (8.66) in the right-hand side of (8.86), 
we eventually obtain for i = s: 

1 r / w,e h " , 

,© 

1 [/ We ,   \        /„ „ We       \ 

C2s 2R bu,0 + (ilois)^ 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

and for i = c: 

If/ We h,        h^, 

,© 

Cl 

(8.93) 

(8.94) 

3 (8.95) 

(8.96) C2c = -^ |6ic,e + (A»ic)_ijj. 

Beginning with the continuity condition for S(O}RZ given in (8.72), we substitute from (8.87) into that 
equation, then expand the derivatives and multiply the result through by iJ, to obtain 

hs {RCTRS^R + <TRS - o-es + cTiies.e) + K {RaR^R + <TRC - uec + ffRecs) 

- -^hchs [iRr)Rs,R + TiRs - ms + »?fies,e) - {RVRC.R + VRC - VQc + ijRBce)] = 0. 

Substituting from equations (8.77)-(8.79) into this equation yields, assuming the residual stresses Sc and Ss 
to be constants, 

RiA4iR,R + ^^4e,fi) + iA- A„) {€%R - €|e) + Aec|©.e 

+ R(BkRR,R + B„kee,R) + (B - B„){URR - kee) + BekRQ,e = 0,   (8.97) 

where we have introduced the following constants hnear and quadratic, respectively, in the thicknesses he 
and ft.: 

A = hsQs + hcQc,       A^ = hsQsVs + hcQcVc,       AQ = h^Gs + hcGc, (8.98) 

B = -hch,{Qc-Qs),       B^ = -hchs{QcVc-QsVs)        Be = -hch, {Gc - Gs).      (8.99) 

Similarly, substituting from (8.88) into the continuity condition (8.73) for S(o)ez, we obtain after some 
algebra the following form for the second continuity condition: 

Ae (ii^e|e),R + R (^4e + A^el^) ^ + B© (iJ^fciie)^^ + RiBkee + B^kRR)^ = 0,       (S.ITO) 
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where the constants are defined in (8.98) and (8.99), and we again assumed the residual stresses to be 
constants. 

The final continuity condition (8.74) involves some rather tedious algebra, which we omit here. However, 
in order to write the result in terms of constants previously defined in (8.98) and (8.99), we remark that we 
make use of the following identity: 

hlxos - hlxoc = {hs - he) (hsXos + hcXoc) - Khs (xoc - Xo«), (8-101) 

where the Z-independent function x may be either a or h. Using this identity, the final continuity condition 
can be brought to the form 

{\ihs- he) [R{Ae%,j, + A,e%e,R) + (A - A,) {e°,j, - e'ee) + Aee'ke,e] 

-[R{B e%,R + B, e^e.fl) + (^ " B.) (e% - e%e) + Be e°Re,e] 

- [R {DkRR,R + D^kee,R) + {D - D^) {knR - kee) + i?efcfle,e] 

+ R[tj,R{N' + Ae% + A^e%e + BkRR + B^kee) + ^ {AeC/je + ^efc/ie)] }_^ 

+ -^{\ (h, - he) [Ae (iJ'4e),fl + R{Ae%e,e + ^.4fl,e)] - [^e (iZ'^e),^ 

+ R{Be%e^e + B.eU^e)] 

- [Pe (i?^fciie),fl + R{Dkee,e + D^kRR,e)] + R^ U},R {Ae e°Re + BekRo) 

+ Rw,e (AT + Ae%e + A^€% + Bkee + B^kRR) ] ^ + R{p + 705) = 0,   (8.102) 

where 
7o = hspos + hcPoc, (8.103) 

is the areal density of the coated membrane (mass per unit area, Kg/rn^, of the circular disk perpendicular 
to the axis), and we have introduced three new constants, each cubic in the thickness hs, defined by 

D = ^[{i + sn)Qs + {5 + n)n''Qc], (S-icw) 

D. = %[{^ + ^'H)QsVs + (3 + 'H)n^QcVcl (8.105) 

De = %[{l + ^n)Gs + {Z + 'H)'h?Gcl (8.106) 

as well as a constant M having units of AT/m: 

AT =hsSs + hcSc. (8.107) 

In the definitions (8.104)-(8.106) we have eliminated he, introducing instead the thickness ratio H defined 

by 

n = ^. (8.108) 
hs 

The terms in (8.102) involving the constants A, A^,, and Ae can be eliminated in favor of terms involving 
B, Bv, and Be and three new constants D, D^, and De, by using the first two continuity conditions (8.97) 
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and (8.100). With these manipulations the third continuity equation simpUfies a bit to 

{ - [RiBe%ji^jt + B,6|e,fi) + (B - B,) {e%j, - e|e) + Becle.e] 

- [R (DkBR,R + D^kBQ,R) + (D - D^){kRR - kee) + i^efc/ie.e] 

+ R[U,R(M + A€%ji + A,€%e + BkRR + B.kee) + ^(^e4e + Beftue)] } 

+ ^ { - [^e {ii'4e),H + R (^4e.e + B.e|fl,e)] 

- pe {R^kRe)j^ + R{Dk0e,e + D^URR^O)   + R^W,R (Aee|e + BekRe) 

+ Rw,0 {M + Ae%Q + A^e%ii +Bkee + B^HRR)]    + Rip + jog) = 0,   (8.109) 

where D, D^, and DQ are defined by 

De = 
h- 

e = ^[il+mnGs + {Z + -H^)HGc]. 

(8.110) 

(8.111) 

(8.112) 

We conclude this Section by summarizing the continuity conditions in terms of the strains and curvatures 
(and their paxtial derivatives): 

R(^4iR,R + A^AB,R) + (A- A,) {€%ji - e|e) + ^ecl©.© 

+ RiBkRR,R + B„k&e,R) + (B - B^) {kuR - kee) + Befcue.e = 0,   (8.113) 

Ae (U^e|e)_^ + ii(Ae|e + A^CIK) © + ^e (il^Aiie)^ + R{Bkee + B^kRR)^ = 0,       (8.114) 

{ - [R (BeiH,ji + 5.e|e.fl) + (B - B,) {e%i, - e|e) + Bec|e.e] 

- [RiDkRR,R + D^kee,R) + {D - D^){kRR - kee) + Defejie.e] 

+ ii [(wR + Tfl) {M + A€%ji + A„€%e + BkRR + B^kee) + ^ (^e4e + B©JfcHe)] } 

+ ^ { - [Se (B^ele) .^ + B (Be|e,e + B, c|H.e)' 

-   De [R^kRe) ^ + B (Dfcee.e + D^ ^^.e)] + B^ (UJ.H + T.^) (A© e^© + ^e fc/ie) 

+ Bw,e (# + ^e|© + A^e|jj + BAee+ B^fcBK)}     + B(p + 705) = 0,   (8.115) 

where the definitions of the constants are repeated here, for convenience: 

M = h,S, + hoSc, (8.116) 

A = h^Q^ + hcQc,        A^ = hsQsVs + hcQcVc,        AQ Z= h^G^ + hcGc, (8.117) 

B = -hcKiQc -Qs),       B^ ^ -hcKiQcVc-QsVs),       Be = ^hh^ (Ga - G,),   (8.118) 
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D^ = 1^[{1 + Zn^)QsUs + (3 + U^)'HQcUcl (8-120) 

D^ = ^[(1 + 3?{2)G, + (3 + U^)nGc]. (8-121) 
X^ 

Note that in (8.115), we have replaced two occurrences of the partial derivative W,R = W,R + T,R. For 
comparisons with Wittrick's work [16], we remark that our w corresponds to the function he denotes by w, 
our r corresponds to the function he denotes by tuo, and our w corresponds to the function he denotes by «;. 
The constants given above differ from those in equations (8) of [16] due to a difference in the choice of ongm 
of coordinates (our origin is at the center of the middle plane of the reference placement, while Wittnck s 
corresponds to the center of the interface plane between coating and substrate of the reference placement). 
The constants AQ, Be, and De do not appear in Wittrick's paper, since he treats only the axisymmetnc 

problem. 

8.6   Formulation of Equilibrium Equations in Terms of Stress Resultants and Stress Couples 

It is more common to find the equilibrium equations for a shell or plate presented in terms of stress resultants 
and couples, and in many respects such a formulation is simpler than (though equivalent to) the one discussed 
in the previous two Subsections. However, it was felt that the approach via continuity conditions was 
sufficiently novel to include in this Report. Here, we derive equations involving stress resultants and stress 
couples from the fundamental equilibrium equations (8.58)-(8.60), which we repeat here for convenience: 

5(o)flZi,z + \ [{RS(o)RR^,R - Sioeei + 5(o)fiei,e] = 0, (8.122) 

S(o)ezi,z + ^ {R^ S(o)Rei),R + ^ ^(oeei.e - 0- 

[w,fl5(o)flZi+^5(o)ezi + S(o)zz,]^^ + j [^,RS(o)Rei + ^S(o)eei + S^o)ez^]^^ 

+ ^[R [(^,RS(o)RRi + ^S^o)Rei + S{o)RZi)\^^ + Poi9 = 0, 

(8.123) 

(8.124) 

where the last equation is a slightly modified version of (8.60). Each of equations (8.122)-(8.124) is first 
integrated through the thickness to eUminate the Z-dependence. Introducing radial, circumferential and 
in-plane shear stress resultants, defined by the following integrals through the thickness (refer to the lower 
portion of Figure 2): 

rh/2 Ahc-h.)/2 rh/2 
NR= S^o)RRidZ= S(o)RRcdZ+ S^_o)RRsdZ, (8.125) 

y_/i/2 J-h/2 J(hc-h,)/2 

/•'•/2 r{hc-h.)/2 i-h/2 
Nne= S^o)RBidZ= .S(o)RecdZ+ S^o)RBsdZ, (8.126) 

J-h/2 J-h/2 J{hc-h.)/2 

Ne= S^o)eeidZ= S^o)eBcdZ+ S(o)eesdZ, (8.127) 
J-h/2 J-h/2 J(hc-h.)/2 

as well as out-of-plane shear stress resultants defined by 

QR ^  r ^WRZidZ =  r^~''^" S^o)RZcdZ+r        S^o)RZsdZ, (8.128) 
J-h/2 J-h/2 J{hc-h.)/2 
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Q& 

equation (8,122)-i 

/fc/2 r(hc-h,)/2 fhl2 
S{o)ezidZ = I S^o)ezcdZ + I S^o-^ezsdZ, 

■ft/2 J-h/2 J(hc-h,)l2 

(ft.-ft.)/2 

ft/2 J-fc/2 

8.124) reduce by this integration process (after multiplying thru by R) to 

{RNR)J^ - Ne + iVjie.e = 0, 

(8.129) 

(8.130) 

{R^NRQ) ^ + RNe,e = 0, (8.131) 

and 

pR + [R (U,RNR + "^NRQ + QH)] ^ + {CO,RNRB + ^Ne + Qe) ^ + logR = 0,     (8.132; 

where we have also applied the leading order boundary conditions of pressure (8.52). In the last equation 
we have introduced the pressiu-e difference p, defined earlier in equation (8.75), and have assumed the mass 
densities to be constant through their respective thicknesses (although they, as well as p, may vary with R 
and 0). 

We next multiply equation (8.122) and (8.123) by Z, to obtain 

Z{S(p)RZi)^^ + -^ ^{RZSfp^RRi),^ - 2'5(o)ee» + {ZS(p)Rei) Q^ 

— {ZS{fi)RZi) 2 - S(o)RZi + p ^{RZS^o)RRi)ji - ZS^o)eei + {ZS(o)Rei) Q^ = 0, 

(8.133) 

and 

Z{S(0)QZi)2 "*"   »2   (^   ^^(0)Rei)^R +  "n   {Z S(o)e0i) 

(ZS(o)ezi) z ~ S(o)BZi + D2 (^ ■^^(o)-R©»),fl + 15 (-^^(o)©ei)^e ~ ^' 

(8.134) 

Integrating each of these equatioiu through the thickness, applying the boundary conditions of pressure 
again, and introducing the following stress couples: 

MR 
fft/2 

ZS(o)RRidZ =  I 
-ft/2 J- 

(hc-h,)l2, ph/2 
ZSiQ)RRcdZ+ I Z S^o)RRsdZ, 

h/2 .)/2 
(8.135) 

f 
MRS =  / 

ft/2 

ft/2 
Z 5(o)ijei dZ 

/•(ftc- 

J-h/2 

(ftc-fc,)/2 /-ft/a 
Z S^o)RBcdZ + / Z S{(i)RQgdZ, (8.136) 

^(ftc-ft.)/2 

Me 
rft/2 

I       Z S(Q)QBidZ =   / 
J-hi% J- 

(he-ft.)/2 /.fc/2 

Z 5(o)eec dZ + I Z 5(o)ees dZ, 
ft/2 J{hc-h,)/2 

(8.137) 

we obtain from (8.133) and (8.134) the following equations involving the shear stress resultants and couples: 

1 r 
-QR + p   {RMR)JI - Me + Mfle.e   = 0, 

and 

Q@ + -^ {R'MRB)J^ + -Me.e = 0 
R 

(8,138) 

(8.139) 

35 



The last two equations can be used to eliminate QR and Qe in equation (8.132), to bring it to the form 

■   [R {UJ,RNR + ^NRO) + iRMR)ji - Me + M^e.e] ^ 

+ k.flATfle + ^Ne + ^ {R''MRQ) ^ + -^ M©,e      + (p + 7o5)i? = 0 
R i?2 R 

(8.140) 

>© 

Equations (8.130), (8.131), and (8.140) are the fundamental equilibrium equations in terms of stress 
resultants and couples, which are given by the integrals (8.125)-(8.127) and (8.135)-(8.137). Performing 
these integrals, we obtain (see Appendix A for the details): 

NR = M + Ae°RR + A^ e%e + BkRR + B^ kee, (8-141) 

NRO = Ae e^e + Be kRe, (8.142) 

Ne = Af + A^ e°RR + Ae%Q + B^ kRR + B kee, (8.143) 

MR = -M- Be% - B^e%Q - DkRR- D^kee, (8.144) 

Mfie = -5e4e - DekRe, (8.145) 

Me = -M - Bue°RR - Be^© - D^kRR - Dkee, (8.146) 

where we have introduced the following new constant (having units of N • m/m): 

M = ^hchs{Sc- S,), (8.147) 

all other constants having been defined in (8.116)-(8.121). Substitution of these expressions in equations 
(8.130), (8.131), and (8.140) yields equations (8.113)-(8.115), which were obtained in the previous Subsection 
as continuity conditions. 

9   Geometrically Nonlinear Membrane Shell Laminate Theory 

We follow Erbay [11], and set the scaling exponents of Section 7, Table l,tor = m = l/2, £ = n = l, t = 3/2, 
p = 2, q = 5/2, and fi = 1/2, to obtain a generalization of the geometrically nonUnear membrane theory 
of Hencky [13] and Campbell [14] to a membrane laminate. With this choice of exponents, the constitutive 
equation (7.23) takes the form 

i) ,-r/^W, + le-^W^,J?^^ 

+ Vi 

(9.1) 

Each variable is now expanded in an asymptotic series in powers of e^/^ (recall that /x = 1/2 here), and in 
particular we have for the partial derivatives of W with respect to C: 

W,i = W?(o),c + e'/^ W(ru + e ^^(2),^ + e'/^ %),^ + e^ W^(4) + 0{e'/% .        (9.2) 
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hence, to order e^, we find 

+ 2 6^/2 + 

(9.3) 

and similar expressions for [/| and F|. Substituting in (9.1), we obtain to order e: 

2^"'W^(l),< + £"'/' (W^(0),< +W(o),cW(i),c) 

+ l^ (2 W(3),c + W(|).c + 2W^(i).cW(3),c + Uf^U + 2%).ct^(2),C + %),c + 2F(o),<%).c ) 

+ Vie    t/(o),p + 
1^2      . %).e + Ujo)     Wk,e\ \  , ^/^3/2N 

(9.4) 

Since this expression mmt hold in the limit e -^ 0 (vanishing thickness), the coefficients of negative powers 
of e must vanish, hence WF(o),< = 0, yielding the solution 

W(Q) = w{p,Q), 

where w is an arbitrary fiinction of p and 0 only. Equation (9.4) then reduces to 

(9.5) 

e^^^EiS^o)izz = eSiSf" + fji (1 - i/j 12^^- •    -1- w^"^ i(.2»'m,c + Wit),<+!^fo),c + ?o),c) 

e (2 W(3),^ + #=(|j,^ + 2fF(i),^t?(3),^ + %j,^ + 2t/(o).c^2),c + F(|),^ + 2F(o),jy(2),f ) 

|^k. + ^5^^ + %)}+0(.3/2)- 

1   /-^ + 

(9.6) 

The following three additional conditions are obtained from the vanishing of the coefficients of e", e^/^, and 
e, respectively: 

2W(i),c + Wfi ),^ + tf(|),^ + %^^ = 0, (9.7) 

W(2).C + %U %U + Um,AiU + %U%U = 0. (9-8) 

2 EiSr + £i   (1 - «^i) ( 2 %).c + ^(1).^ + 2 W(i),(W(3).c + C?fi).^ + 2 %).<%).< + %).( + 2F(o),c%).<) 

0, 

(9.9) 
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which we shall need later. We turn next to the two ofF-diagonal constitutive relations (7.24) and (7.25) under 
these new scalings: 

e'Si^ezi = Y hi .G.  U       ./.E:e^M> + 
P 

(9.11) 

The leading order terms in these equations imply C/(o),c = 0 and ^(o),^ = 0, hence the leading order in-plane 
displacement components are both independent of C, i-e., 

C^(o) = u{p,@),        y(o) = v{p,e). 

The conditions U^o),c = 0 and V{o),c = 0 reduce equations (9.7)-(9.9) to 

^(i).C (2,+ %u) = 0. 

2Si5r'" + Si (1 -Vi)[2 W^s)x + W^(2),c + 2 W^(i),cW^(3),C + ^U + ^m) 

+ 2ui\u,p + -w^p + 1 ,2   . v,e + u , We + 
2"'" '       p 2p2 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

= 0. 

Noting that VF(o),^ = 0 implies a scaled Jacobian determinant (7.22) of the form 

J = 1 + W^(i),c + 0{e^/% 

it follows that in the limit £ -> 0, since we must have J > 0 in that hmit, we must also reqmre Wi,^ > -1. 
This precludes the solution W^i)^ = -2 of (9.13), implying that W(i)x = 0. This leads to W(2),c = 0, from 
(9.14), hence (9.15) yields the following expression for W^s)^: 

l.....M±Jf + ^j. (9.16) 

Next, the off-diagonal in-plane constitutive relation (7.26) has the following form under these scalings: 

,.,s_.f(,(p.,!!^)..S^.» 

1 P 

(9.17) 

The leading order term here yields the same constitutive relation found in (8.18), except that the strain- 
displacement relation has changed: 

StS(o)flG ̂ = Gi L+^Le^ + L^m + M^e] ^ Gane, (9.18) 
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where 

2 I  ''^ P P P 
(9.19) 

The final two constitutive relations (7.27) and (7.28) take the following fom^: 

eEiSnm = eE<Sr + Si ({1 -i^i) \^eU,, + ef,,W,, + | [eW% + ^ (Ul + Fj)]| 

+ i^i< e 
Ve + [/ + e 

2p2 
+ £' 

(t/.e - Vf + (F© +1/) 
2p2 

(9.20) 

+ e-V^lr., + e-'\wl + \{u% + n)]\ 

and 

eSf Seoi = eSe5f "^ + 5* I (1 - i^j) ^ e 

1 r 

'^)-0-^ 2p2 

+ i^H e f^,P + £r,pW.p + I [eWfp + e^ ( Ul + Fj )] (9.21) 

+ e -1/2 ̂ .C + e-|TF.| + |(£/| + F|)|j. 

In the last two equatiorm the terms up to 0(e) involving derivatives with respect to ^ reduce to simply 
W(3),(, which can be replaced by (9.16). The coefficients of e then yield, after some algebra, the same 
in-plane constitutive relations (8.27) and (8.28), except that the strains are now given by the ^'-independent 
expressions 

€RR = ',i>+l^,p-- 
-     _ v,e + « 
cee =   + w ,© o 2 ■ (9.22) 

The most important results here are that the leading order in-plane displacement components have the forms 
U(o)R = u(J?,6) and JJ(o)e = v{R,&) (in terms of the physical variables), i.e., they are independent of Z. 
This is in marked contrast to the Kirchhoff-Love expressions (8.31) found previoiwly, which are linear in Z. 
As a result of thrae simple expressions for the in-plane displacements, the cittvature terms URR, HRQ, and 
Aee do not appear in equations (8.35)-(8.37) defining the in-plane strain components. Simunarizing to this 
point, we have derived the following expressions firom the scaled constitutive relatioi^: 

u^o)z = wiR,ei     u^o)R = u(R,@),     c/(o)© = «(ij,e), 

S(0}R&i  =  GttRQ, 

E- 
S{o)RRi = Si+ 2 (euR + neee), 

5(o)eet = Sj -I- -——p- (e©© + Vi€RR), 

where Si is given by equation (8.29), and 

1 
2 ejee = X   U.B + -^-^— + —^ 1-  R R R 

,0 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 
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CRR = U,R + T,RW,R +  -W^n = £flfl, (9.28) 

Under these new scalings, the radial and circumferential equilibrium equations (8.122) and (8.123) are 
unchanged, but the shear stresses disappear from the terms of the axial equilibrium equation (8.124) involving 
derivatives with respect to R and 0. The leading order equihbrium equations are then given by 

S{o)RZi,z + D [(-^^(Oflfli)^^ - 5(0)601 + 'S'(o)flei,eJ = 0, (9-30) 

S(o)ezi,z + D2 ^^^ S^o)Rei),R + ^ ^(oeei.e = 0- (9-31) 

fw,ii5(o)flZi + -^-^(oezi + S(o)zzij „ +  p \^,R^(o)Rei + -^^(oeeij 

+ ^[R {^,RS(o)RRi + ^5(o)flei)] ^ + Poi9 = 0,   (9.32) 

where we used the result W^ = e'^^ W(3),< + 0{e^) in obtaining the scaled version of the last equation. The 
boundary conditions of pressure are again given by (8.53), so the equilibrium equations can be integrated 
through the thickness, applying the boundary conditions of pressure, to obtain (after multiplying thru by 
R) equations in terms of the in-plane stress resultants (8.125)-(8.127): 

{RNR)^ii - Ne + NRe,e = 0, (9.33) 

(iJ^ATn©)^ + RNe,e = 0, (9.34) 

[R (w,flNR + ^NRe)] ^ + {iJ,RNRe + ^iVe)^ + (p + 7off)i? = 0. (9.35) 

Since the curvatures have vanished from the formulation, the stress resultants (8.141)-(8.143) in this case 
reduce to 

NR = ^/ + Ae% + A, €%e, (9.36) 

NRQ = Aee$je, (9-37) 

Ne=^r + A^eU + ^4e- (9-38) 

10   Geometrically Linear Shell Laminate Theory 
Assuming the scaling exponents r = l, Tn = 2, i = n = S, t = p = 4, q = 5, and // = 1, we begin again 

with the constitutive relation (5.5) for Szz, from which we obtain 

e' 

+    e* I     "' ^   "' + 2        ' 2p2 
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Each of the scaled stress temor components, as well as each of the displacement components and its partial 
derivatives, is now written as an asymptotic expamion in S = e, since /x = 1. Substituting the appropriate 
expansion for the variables appearing in equation (10,1), we obtain to third order on the right-hand side: 

e'SiS(o)zzi = e^EiSf" + Si{il - Vi) (Iwlou + Wixu) ^WioU + ^'i^Wkc + Wii), 

+    ^ [I - m) (W(2).C + W(o).< W(i).^) + Vi ( l/(0).p + f ,,W(0).p + 
Vm,e + U(si) + 0(e*) }<10.2) 

The leading order term of this relation yields 

lr(o),^ = 0    ^    W(o) = w(p,e), (10.3) 

where w is an arbitrary function of p and 8 only, and then the next order term reduces to the result 
W^x)^(^ = 0. With these results, the third order term then gives the following important relation: 

W"(2),c = 
 qnm n     (fr       . f ,t;    I V(o),e + U(o) (10.4) 

Next, consider the last two off-diagonal constitutive relations of (5.6) for the out-of-plane stress com- 
ponents. The scaling of these components yields the scaled relatiore (to third order on the right-hand 
sides): 

„4vi  O —   ^i 
£      ^(0).C + + 0{e* 

(10.5) 

(10.6) 

respectively.  Rrom the leading order terms of these expressions, recalling that W(o),< = 0, we obtain the 
following two equations: 

t/(o),C + w,p = 0,        F(o),f -I- -^ = 0, 

which may be integrated to obtain 

U(o) = S(p,0) - Cw,p,        and       %) = v{p,Q) - C 
w,e (10.7) 

where 2 and v are arbitrary functions of p and 6 only. 
The scaled version of the first off-diagonal in-plane constitutive relation of (5.6) reduces to 

e SjSiiet — Gi £ 2 [^W''' + p + -p j +^^^) 

Thus, to leading order we obtain the simple relation 

after introducing an in-plane strain component CRQ defined by 

6Be   =   5l%).p + + —^ 

(10.8) 

P P \/^ P 
(10.9) 
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The final two constitutive relations (5.3) and (5.4) take the following forms (to third order in e), after 
scaling of the various components: 

e'lliSRiii = e^lliSr + fi { (1 - ^i)e^ {U(o),p + T,p%),p) 

+ I'" Ko),C + 2^^(0),cW^(i),c) ] + Oie') }, (10.10) 

and 

.3 I V(o),e + ^(0) 
e'SiSeei = e'EiSf "> + fi | (1 - i/i) 

\ p / 

+ (10.11) 

The first and second-order terms involving W^ in these expressions vanish since W(o),c = ^(i),c = 0, and 
(10.4) can be used to replace the third order term involving W(2),^. To simplify the reduction of the leading 
order expressions that follow, we introduce in-plane strain components euR and eee defined by 

ekfi = U(o),p + r,pw,p = u,p -I- r,pw,p - Ci",pp = (-RR - C^RR, (10.12) 

eee =  :  = ^ _ C ^^ + ^) ^ 4^ _ Ckee, (10.13) 

where we have introduced ^-independent terms 

^RR = ",P + ^,P^,P' ^RR = '^,PP' 

eee = —^.       kee = — + -^. 

These, together with (10.4), allow us to write the leading order relations as 

Si5(o)flfli = (\^^) Si^f" + Si [(1 - Vi)tRR + uitee - j—-^ (cfifi + eee) 

Replacing fj in the last two expressions yields 

^iS(o)RRi = Si 5i -I-    _   2 K^RR + I'teee), 

(10.14) 

(10.15) 

(10.16) 
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^ ^ IP. 

where we have introduced the new constants 

Si = (LJfl^ s«-. 
l-n      ' 

(10.17) 

(10.18) 

We summarize to this point by rewriting the important results in terms of leading order variables that 
are fanctions of the physical coordinates R, 0, and Z, viz.; 

-3„ii ., — ^3 u = e au,       V = e av;        w = e aw,       T = eoF, (10.19) 

5(o)flet = £ SjS(o)iiet = Gi^ne- (10.20) 

(10.21) 

where 

Ei 
S(o)eei = e Si5(o)eet = 5t + 2 (^©© + ^i^RR): 

Oj   —  €   Zj^Oi 
i-t-i /   ' Vi-i'i 

(10.22) 

(10.23) 

and the last equality of (10.23) holds for the special case of thermal stress, following from (5.2). The strain 
components are given by 

_   3-- 1 f-ne = e ene = x 
ue-v     T^RW,e 

■" R R -^^(^-T) c|e - ZkRe, (10.24) 

eRR = £   €RR   =   U^R   +   r,iiW,fl   -   ZW^RR   =   ERR   -   Z URR, 

where the 2^-independent strains and "curvatures" are 

1 
^RB = l{v,R+      ^ u,e - V     r,BW,« 

R KBe = —^ + 
Ji2     '       iJ    ' 

(10.25) 

(10.26) 

(10.27) 

^RR  = «,fl + r,ijW,il, fcflii  = W,RR, (10.28) 

(10.29) 

Applying the scaling exponent values of this Section to the scaled equilibrium equation (7.38)-(7.40), 
we obtain to leading order: 

S(o)RRi,p + -5(o)ijei,e + S(^o)RZi,c + - (^5(o)iiiM - 5(o)ee» j = 0, 1^" 
P 

(10.30) 
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S{o)Rei,p + -5(0)661,6 + 5(0)6^1,? + -S{Q)Rei = 0, (10.31) 

',e 
(r,p5(o)ilfli + S^o)RZi ) +     - (r',pS'(o)fl6i + 'S'(o)6Zt ) \ / ,p p \ /, 

+    \y,pS(o)RZi + S^o)ZZi]   + - (r,p5(o)flfli + 5(o)flZi) +9 = 0.(10.32) 

In terms of the physical variables, these take the forms 

S(o)RZi,z + D |(-R'S'(o)fifli)_^ - 5(o)66t + 'S'(o)flei,6j = 0) (10.33) 

S{0)eZi,Z + "02 (-^  S^o)Rei),R + •« -5(0)661,6 = 0- (10.34) 

^,RS{0)RZi + S[o)ZZi        +   "D [r,fl5(o)fl6t +"5(0)621] _e 

+ - [iZ (r,fl5(o)fiRi + 5(o)flZi)] j^ + Poi9 = 0,   (10.35) 

The leading order boundary conditions of pressure are the same as for the previous theories, viz., 

Sto)RZ = 0.       S^o)ez = 0.       Sfo)zz = -P^- (10-36) 

Integrating equations (10.33)-(10.35) through the thickness, we obtain the equilibrium equations by the same 
method used in Section 8 in terms of the stress resultants and couples introduced in equations (8.125)-(8.127), 
and (8.135)-(8.137), viz.: 

{RNR)H - Ne + NRe,e = 0, 

(iJ^ATfle),^ + RNe,e = 0, 

(10.37) 

(10.38) 

and 

RT,RNR + iRMR)^n - Me + MRe,e\ „ 

+ T,RNRe + -^ {R^MRB)J^ + -M6,6 
,© 

iJ2 ^ "^^« ■ R 

The stress resultants and couples are again given by equations (8.141)-(8.143), i.e. 

NR= M + Ae%R + A^€%e + BHRR + 5^*66, 

NRQ = Aee^RQ + BekRQ, 

Ne = Af + Au€°jiii + Ae%e + B„kRR + Bkee, 

MR = -M-Beln-B„e%Q-DkRR-D^kee, 

+ {p + 7o9)R = 0.   (10.39) 

(10.40) 

(10.41) 

(10.42) 

(10.43) 

44 



Mne = -Bee%Q - Ue^fie, (10.44) 

Me = -M - B^e%n - Bc|e - D^HRR - Dfe©©, (10.45) 

but note that the strains and curvatures are now replaced by (10.27)-(10,29) of the present Section. 

11   Geometrically Linear Membrane Shell Laminate Theory 

In this Section, we develop the equilibrium equations for a geometrically linear membrane laminate, 
subject to pressure and gravity loading. We begin by choosing the scaling exponents of Section 7 to be 
r = m = l,e = n = 3/2, t = 5/2, p = 3, g = 7/2, and ^ = 1/2, as indicated in Table 1 at the end of that 
Section. With these exponents, equation (7.23) takes the form 

s'^^^iSzzi = e^/^EiSr + eA(l- vi)   W,i + iw| + e i ( 0= + FJ ) 1^, 

+ «^i[e'/= (u,,+ K^U.f„^.,..fe.0 (11.1) 

+ e' 
2 2p2 

The terms involving partial derivatives with respect to C must be expanded up to ternw of order e'/^, as in 
equations (9.2) and (9.3). Making the appropriate substitutions in (11.1), and then setting the coefficients 
of e°, e^/^, e, and £^/^ in equation (11.1) to zero, we obtain the following four equations: 

W(ou + oHu = 0' (11.2) 

W(i),( + W(o),c W(i).c = 0, 

Wi2U + |(W^fi),c + 2W^(0).cW(2).,) + (%),c + F(|).,) = 0, 

(11.3) 

(11.4) 

+ {UlohAiu + %).C%).c)] + '^i f %).. + ^2)^±£(2l^ 1 = 0.   (11.5) 

Equation (11.2) implies that W(ou = 0> hence W^o) = w(p, C), and (11.3) then yields lF(i),f = 0, reducing 
the remaining two equations to 

W(2U + {uk,< + %u) =0, (11.6) 

i^iSr+eA(i-«'«)[w(3).c+(%),c%).< + %uniu)]+n(%)..+^5).^i^)} = 0. (11.7) 

We turn next to the two off-diagonal constitutive relations (7.24) and (7.25) under these new scaJings: 

a 
2 

e^^iSnzi = § [e^/2 U,^ + eW,^ + ef .^W.^ + eW,pW,( + e^ (U,pU,( + %¥( )] , (11.8) 
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Gi W.e       W.cW, 
e'^iSezi = ^^{e'l'V,,+e'-^ + e :02^e ^^2 

P 
(11.9) 

The leading order terms in these equations imply U(o)x = 0 and ^(o),^ = 0, hence the leading order in-plane 
displacement components are both independent of C, i-e., f/(o) = u{p,Q) and^V(o) = u(/3,©). When these 
two results are substituted in (11.6) and (11.7) we find that W{2)x = 0. and W^s)^ is given by 

Wisu = 
SiSf"' t^i      (rr       , V(o),e + t/(o) (11.10) 

which will be used later. First, we note that the off-diagonal in-plane constitutive relation (7.26) has the 
following form under these scalings: 

^"^,Sns, = f [^" [v., + ^) .e'^-^.s'^ 

+ e' UAU,e-V) + VAV,e + U) 
P 

(11.11) 

The leading order term here yields the same constitutive relation found in (8.18), except that the strain- 
displacement relation has changed: 

The final two constitutive relations (7.27) and (7.28) take the following forms: 

(11.12) 

(t/,e - y? + (i^.e + Vf 
2p2 

(11.13) 

and 

.T^i 
2p' 

+ Wx + lw^c + 4i^'<^'^'^)})- 
(11.14) 

The terms involving derivatives with respect to C in the last two equations reduce to simply W(3),^, which can 
be replaced by (11.10). The coefficients of e^/^ then yield, after some algebra, the same in-plane constitutive 
relations (8.27) and (8.28), except that the strains are now given by the simpler expressions 

€flfl = U,p,       eee = —-—. (11.15) 
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As with the geometrically nonlinear membrane theory, we again find that the leading order in-plane 
displacement components !7(o)fl = uiR, ©) and l7(o)e = v{R, 0) are independent of Z. The curvature terms 
fefifls kRQ; and feee are thus again absent in equations (8.35)-(8.37) defimng the in-plane strain components. 
In addition, the nonlinear terms involving derivatives of w, as well as any reference to the sm^ace-defining 
fimction r(Ji), have disappeared from the strain-displacement relations. In terms of physical variables, the 
governing equations can be summarized thus far by: 

%)z = w(iJ,e),       U^o)R = u(R,Q),       C/(o)e = v(iJ,e), (11.16) 

S(0)R&i  — GjCflO, (11.17) 

Ei 
SmRRi = Si + 2 (^RR + f^i^Q l — vf 

(11.18) 

where 

Ei 
Smeei = Si + ^ (eee + Vi^Ru 

^ ' l-vf 
(11.19) 

(11.20) 

euR = ti.ij = e^jj, (11.21) 

«ee (11.22) 

Under these new scalings, the radial and circumferential equilibrium equations (8.122) and (8.123) are 
unchanged, but the out-of-plane shear stresses disappear from the axial equilibrium equation (8.124). The 
leading order equihbrium equations are then given by 

S{o)RZi,z + p [{■R5(o)KKt)_jj - 5(o)eet + 5(o)Hei,ej = 0, (11.23) 

S(o}BZi,z + -^{R S^o)Re^),R + — 5(o)ee»,e = 0, i?2 R 
(11.24) 

S(o)zzi,z + -^ WflS(o)Bet + ^-5{o)eej  ^ + p [-^ \<^,RS(o)RRi + ^%)iie<jj     + Pug = 0. (11.25) 

These may now be integrated through the thickness, applying the boundary conditions of pressure, to obtain 
(after multiplying thru by R) equations in terms of the in-plane stress resultants (8.125)-(8.127): 

{RNR)J^ - NQ + NRe,e = 0, (11.26) 

(R^NRQ) ^ + RNe,B = 0, (11.27) 

[iJ (U^RNR + ^^Be)]     + (w,jiiViie + ^^e)     + iP + 7og)R = 0. (11.28) 
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Since the curvatures have vanished from the formulation, the stress resultants (8.141)-(8.143) in this case 
reduce to 

NR=^J■ + Ae'jin + A,€%e, (11-29) 

NRe = Aeele, (11-30) 

Ne=Af + A,elji + Ae%e. (11.31) 

12   Conclusions 

The method of asymptotic expansions has been applied in a purely formal way to the geometrically nonUnear, 
three-dimensional equilibrium equations of a coated membrane laminate, each component of which is assumed 
to be a uniform, homogeneous, isotropic elastic material. Four different choices of the scaling exponents 
appearing in equations (7.2)-(7.5) have led to four distinct theories, each of which reduces to a well-known 
theory when specialized to a single material. The method is systematic and self-consistent, as the only 
freedom available in constructing a theory is the choice of scaling exponents. In short, having made a choice, 
one is led without benefit of any further assumptions to a theory dictated by that choice. The main weakness 
in the method is the essentially ad hoc nature of the choice of exponents used in the scaling of variables and 
loads. Attempts have been made in the recent literature (see, for example [17, 18]) to remedy this remaining 
unsatisfactory feature. 

Although no attempt has been made here to put the method on a rigorous mathematical foundation, 
articles doing so are available in the literature, especially from the French school led by Ciarlet [19, 20, 
and references therein] and his co-workers. Our goal was to survey, and systematically derive by a single 
method, generalizations of several well-known theories of a single material to a coated membrane laminate. 
The mechanical behavior of such a laminate is of considerable practical interest to those in the aerospace 
community committed to the manufacture and deployment of large aperture, optical quality reflectors in 
space. The availability in a single publication of several models from which to choose for the analysis of such 
a laminate will hopefully be useful to other workers in the community. In that regard, a companion Volume 
II of this Report providing details of the analytical solutions of several boundary value problems associated 
with these models is currently being prepared for publication. 
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A   Generalization to a Multilayer Coating 

High-reflectance optical coatings typically consist of a dielectric "stack" of two or more coating materials 
alternating in position through the thickness. In this Appendix we generalize our work to include such mul- 
tilayer coatings. The strain-displacement relations and equiUbrium equations characterizing a given theory 
are, except for the gravitational term of the axial equilibrium equation, unchanged by this generalization. 
The only calculations that require modiflcation are the through-the-thickness integrals of the constitutive 
relations, which define the stress resultants and couples. These were first introduced in Subsection 8.6. We 
give details of the calculations for NR and MR, noting that those for Ne, NRS, Me, and MRO involve 
nothing new, and will be seen to be obvious generalizations of the earlier single-coating (two-layer) results. 
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^N = h 

i = ft/2 

6-1 

Ci 

{ftjv,Biv,i'Ar,5jv) iV 

hN-i,Efr-i,Vff-i,Sff-i) N-1 

O 

{hi,Ei,Vi,Si) 

(fti-,Ei,i/i,Si) 

2 = ft/2 

2 = 0 

2 = -ft/2 

Figure 5: Geometry of multilayer stack. 

The geometry of the reference placement of our membrane substrate layer iV, with N — 1 coatings, is 
illustrated in Figure 5 (compare to Figure 2). To do the through-the-thickness integrals, we introduce a 
change of variable to 

i = z + -. (A.1) 

As in Figure 2, the middle plane of the stack is the plane Z = 0 (corresponding to f = ft/2) which has, for 
illustrative purposes only, been placed in the coating numbered JV — 2 in Figure 5. Rrom this Figiu"e, it can 
be seen that the thickness hi of layer i is given in terms of the new coordinate | by 

ni — ^»      st- 

and the total thickness is 
JV N 

h = '^hi = '^i^i - Ci-i) = CiV. 

(A.2) 

(A.3) 
t=i t=i 
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Thus, for the through-the-thickness integral of an arbitrary function f{Z) we have: 

rh/2 fh N      -{; 

/      f{z)dz=     7(0rfe = E/     /(^)^^' (A-^) 

where fiO = fi^-h/2). 
We begin by making this change of variables in each of the definitions (8.125)-(8.127) and (8.135)-(8.137) 

of the stress resultants and stress couples, respectively: 

rh/2 A   Z"^*       ~ 
NR= S(o)RRiiZ)dZ = y2 S^o)RRi{Od^, (A.5) 

J-h/2 jr[ ^€=?i-i 

rh/2 N        £, ^ 
NRe= S{o)Rei{Z)dZ = y2 S^o)Rei{Od^, (A.6) 

J-h/2 ^ Ji=ii-l 

rh/2 N       .5, 
ATe =  /       S^o)eeiiZ)dZ = y2 S^o)eei{Od^, (A.7) 

rh/2 N       -5; 
Mfl=/       ZS(o)RRi{Z)dZ = Y] {^-h/2)S^o)RRi{Od^, (A.8) 

•/-V2 i=i Ji=ii-i 

rh/2 N       .5, 
MRQ=  I      ZS(o)Rei{Z)dZ = y^ (e - V2) 5(o)flei(eK, (A.9) 

^-ft/2 " Ji=ii-i 

rh/2 ^   rii 
Me =  /      ZS^o)eei{Z)dZ = y2 (^ - h/2) S^o)eei{Od^- (A.10) 

y-A/2 ^ •/f=«.-i 

Recall now the separation of each of the in-plane constitutive relations (8.32)-(8.34) into Z-dependent and 
Z-independent parts: 

S{o)Rei = crR0i - ZT)RQi,       S(^o)RRi = (^Ri - Zr}Ri,       5(o)eei = <^Bi ~ Zrjei, (A.11) 

where the Z-independent functions are defined by 

C^RBi  = Gic'jiQ, TjRQi  = GikRQ, (A. 12) 

cTRi = Si + Qi (e% + I'ic^e).       VRi = Qi (^RR + i^ikee), (A. 13) 

(TBi = Si + Qi (4e + ^'te/jfl))       vet = Qi (^ee + i^ikRR). (A. 14) 

After the change of variables we have 

S^o)RRi = (^Ri - {^-h/2)T)Ri,       5(o)eei = <7e» - (^-/i/2)»?et, (A.15) 
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and 

Substitution of the first of equations (A.15) in equation (A.5) yields 

^H = E/ Ni-(e-ft/2)%i]d?, 

iV    r h 1 

1=11- 

^ f        1 1 
= 53 I (TRihi + -nmhi [h - (fi + gi_i)] i, 

where we made use of (A.2) to obtain the final equality. Now, from (A.2) it is easy to show that 

» 

(A.16) 

(A.17) 

fc=i 

from which 

hence 

»-i 

i» + Ct-i = >3 ft* + >3 fefci 
fc=i fc=i 

i-l JV 

/i - (6 + ii-i) = ft - E ''* - E /»* = E ^* - E ^*- 

(A.18) 

(A.19) 

(A.20) 
k—l fc=l fc=» fc=i 

where the last result follows by substituting the first equality of (A.3) for h. Substitution of this restilt in 
(A.17) yields 

iV N / N * \ 

^fi = E '^^*^*"'" 2 53 ''^*ft* (E ft* ~ E ft*) 
«=1 «=1 \k=i k=l       ) 

(A.21) 

In this expression and others that follow VK, make use of the following identity, which can be proven using 
the principle of mathematical induction: 

E "ifti {E ft* ~ E ft* j = E E ft»ft* (°* ~ <** 
i = l fc = t+l 

(A.22) 
i = l \fc = t fc = l 

for any indexed fanction Oj. This allows us to rewrite (A.21) as 

JV JV-l      JV 

iVfl = 53 <^fi<ftf + 2 S E ft*^ 
»=1 i = l  * = »+! 

Substituting now for am and "qm from equation (A. 13), we find 

JV 

(A.23) 

iVfl = E ft* [Si + Qi {4H + ^*4e)] + 
i=l 

JV-l       JV 

9 E   E   ft*ft* W* (*fi^ + ViksB) - Qk {kRR + Vkkse)],   (A,24) 
i = l  JS! = »+1 
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which can be written in the same form as equation (8.141), i.e., 

NR = Af + Ae% + A^ ele + BkRR + B^ kee, (A.25) 

where the multilayer constants are given by 
N 

^r = '^hiSi, (A.26) 

N N 

A = 53 hiQi,       A^ = Y, hiQm,, (A.27) 

^=lll    E   hih{Qi-Qk),       -B, = iX;    E   hih,{Qm-Q,u,). (A.28) 
i=i fc = i+i «=i * = t+i 

The multilayer expression for Ne follows directly from (A.25) and the observation that NR and Ne differ 
ultimately only by an interchange of e^;j and e%Q, and kRR and kee, which yields 

Ne = Af + Ae%e + A^ e% + Bkee + B„ kRR. (A.29) 

The multilayer expression for NRS is an obvious generalization of (8.142), i.e., 

NRQ = Aee°Re + BekRe, (A.30) 

where the constants generahze those found in (8.98) and (8.99): 

Ae = 53 hid,       Be = \Y^   E   ^'^^ (^* " ^*) • ^^"^^^ 

Turning now to the calculation of MR for a multilayer, we have from (A.8): 

Mfl = V / (^ - ft/2) 5(o)flfli d^ = Y> ^S^o)RRi d^- oZL ^(o)««' '^• 

Substituting from the first of equations (A.15), and using the definition (A.5) in the last term, the last 
equation yields 

MR = J2 ^Wm-{^- h/2) T,Ri] d^ - -NR, 

^ r^'        (        ft    \ ..    A /•«' ., ..    ft 

or, factoring the squared and cubed difference terms, and using (A.2) in the results: 

1 ^ ft ^ 
MR = -S^ (TRi hi i^i + Ci-i) + -^^nm hi i^i + 6-i) 

»=1 •=! 
N 

3 - ^ E 'Jfli /^i (e? + ^i^i-i + ^ti) - ^^fl-   (A.32) 
«=i 
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Using the last equation of (A.17) to replace NR in (A.32), and collecting terms involving am and JJHJ in that 
result, we obtain 

1 ^ 
2^ 

»=1 

»=1 

or, using (A.20) and (A.22) in the sum involving am- 

^ N-l      N 

1 ^ 

t=l fc = »+l 

- ^ E to fti [3ft' - 6h te + Ci-i) + 4 (el + Ci6-i + Cf-i)].   (A.33) 
t=i 

Substituting for am and r/m from (A.13), we find that (A.33) can be written in the same form as equation 
(8.144), i.e., 

MR = -M - Be%ii - B„e%Q - DHRR - D^feee, 

where the multilayer constants B and Bp are defined in (A.28), M is given by 

JV-l       JV 

2 

^   JV-l       JV 

■^ = ? E    E    hihk(Si- Sk), 

(A.34) 

(A.35) 
i = l k = i+l 

and D, 13^ have the forms 

1   ^ 
^ = li E «< ^* [S/*" - 6/1 te + Ci-i) + 4 (f? + Ci^i-i + €?-!)] = (A.36) 

1=1 

JV 

(A.37) ^^ = n E «< '^i /»* [3/*' - 6ft (^i + «i-i) + 4 (Cf + CiSi-i + €f-i)] . 
i=l 

These two coefficients can be simplified somewhat using the following identities: 

3ft2 - 6ft(Ci + |i-i) = 3 [ft2 - 2ft (/li + 2Ci-i)] = 3 [(ft - hif -hi - 4ftCi-i 

il + l<e<-i + eti = (€i - Ci-i)^ + Hi^i-i = ftf + 3e«e«-i, 
where we made use of the fact that ^i + f j_i = /ij + 2|i_i in the first of these. Substituting these results in, 
for example, (A.36), yields after simplifying: 

1   ^ 
^ = 15 E Q' ''H^i + 3 (ft - hif - mi-i (ft - ^i)], 

i=l 
(A.38) 

and ^sre note that the third term in brackets vanishes for i = 1 (since $o = 0) and i = N (since (,N = ft) 
Similarly, D„ may be written as 

1 
JV 

D. = j^Y.Qi''i^i H + 3(ft - hif - 12|i_i (ft - Ci)   . 
1=1 

(A.39) 
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The multilayer form for MQ follows directly from (A.34) by simply interchanging e^^j and CQQ, and kRR 
and fcee > which yields 

Me = -M- Be%e - 5„e% - Dkee - DukRR, (A.40) 

while the multilayer expression for Mne is a generalization of (8.145), i.e., 

MRS = -Bee^RQ - DekRe, (A.41) 

where Be is given in (A.31), and the new constant De generalizes (8.112) (it is in fact the same as (A.38) 
with Qi replaced by Gi): 

1    ^ 
De = Y^Y^Gihi [/if + 3{h- hi)"" - 12^,_i {h - eO] • (A.42) 

t=i 

It is straightforward to check that our earUer results for the stress resultants and couples (for a membrane 
with a single coating) follow immediately from those determined in this Appendix by taking AT = 2 (in which 
case i = 1 = c corresponds to the coating, while i = 2 = s corresponds to the membrane substrate). 

Finally, for a multilayer coating the area! density 70 defined by equation (8.103), which determines the 
gravitational body force appearing in the axial equilibrium equation of each theory, must be generalized to 

yer i. 

70 = 5Z^«''0'' ^^-^^^ 

where poi is the mass density of the material in laye 
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